Table of Contents
ISRN Thermodynamics
Volume 2013, Article ID 935481, 14 pages
http://dx.doi.org/10.1155/2013/935481
Research Article

Perturbation Solution for Radiating Viscoelastic Fluid Flow and Heat Transfer with Convective Boundary Condition in Nonuniform Channel with Hall Current and Chemical Reaction

Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, 577 451, India

Received 24 May 2013; Accepted 4 July 2013

Academic Editors: G. L. Aranovich, C. D. Daub, and A. Ghoufi

Copyright © 2013 B. J. Gireesha and B. Mahanthesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Beard and K. Walters, “Elastico-viscous boundary layer flows I. Two dimensional flow near a stagnation point,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 60, pp. 667–674, 1964. View at Google Scholar
  2. K. R. Rajagopal and T. Y. Na, “On Stokes' problem for a non-Newtonian fluid,” Acta Mechanica, vol. 48, no. 3-4, pp. 233–239, 1983. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Sarpkaya, “Flow of non-Newtonian fluids in a magnetic field,” AIChE Journal, vol. 7, pp. 324–328, 1961. View at Google Scholar
  4. C. C. Chang and T. S. Lundgren, “Duct flow in magnetohydrodynamics,” Zeitschrift für angewandte Mathematik und Physik, vol. 12, no. 2, pp. 100–114, 1961. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Attia and K. M. Ewis, “Unsteady MHD couette flow with heat transfer of a viscoelastic fluid under exponential decaying pressure gradient,” Tamkang Journal of Science and Engineering, vol. 13, no. 4, pp. 359–364, 2010. View at Google Scholar · View at Scopus
  6. M. E. Sayed-Ahmed and H. A. Attia, “MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity and Hall effect,” International Communications in Heat and Mass Transfer, vol. 27, no. 8, pp. 1177–1187, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Attia and M. A. M. Abdeen, “Unsteady hartmann flow with heat transfer of a viscoelastic fluid under exponential decaying pressure gradient,” Engineering MECHANICS, vol. 19, no. 5, pp. 37–44, 2012. View at Google Scholar
  8. H. A. Attia, “Hall effect on couette flow with heat transfer of a dusty conducting fluid between parallel porous plates under exponential decaying pressure gradient,” Journal of Mechanical Science and Technology, vol. 20, no. 4, pp. 569–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Hayat and O. U. Mehmood, “Slip effects on MHD flow of third order fluid in a planar channel,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1363–1377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Kh. S. Mekheimer and M. A. El Kot, “Influence of magnetic field and Hall currents on blood flow through a stenotic artery,” Applied Mathematics and Mechanics, vol. 29, no. 8, pp. 1093–1104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Pal and B. Talukdar, “Perturbation analysis of unsteady magnetohydrodynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1813–1830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Chamkha, “MHD flow of a uniformly streched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction,” International Communications in Heat and Mass Transfer, vol. 30, no. 3, pp. 413–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. I. J. Uwanta and E. Omokhuale, “Viscoelastic fluid flow in a fixed plane with heat and mass transfer,” Research Journal of Mathematics and Statistics, vol. 4, no. 3, pp. 63–69, 2012. View at Google Scholar
  14. S. S. Saxena and G. K. Dubey, “MHD free convection heat and mass transfer flow of viscoelastic fluid embedded in a porous medium of variable permeability with radiation effect and heat source in slip flow regime,” Advances in Applied Science Research, vol. 2, no. 5, pp. 115–129, 2011. View at Google Scholar
  15. M. Massoudi and A. K. Uguz, “Chemically-reacting fluids with variable transport properties,” Applied Mathematics and Computation, vol. 219, pp. 1761–1775, 2012. View at Google Scholar
  16. R. C. Bataller, “Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition,” Applied Mathematics and Computation, vol. 206, no. 2, pp. 832–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. O. D. Makinde and T. Chinyoka, “Numerical study of unsteady hydromagnetic Generalized Couette flow of a reactive third-grade fluid with asymmetric convective cooling,” Computers and Mathematics with Applications, vol. 61, no. 4, pp. 1167–1179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Yao, T. Fang, and Y. Zhong, “Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 752–760, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. O. D. Makinde and A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1813–1820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, NY, USA, 1965.
  21. T. Hayat and M. Nawaz, “Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents,” International Journal for Numerical Methods in Fluids, vol. 67, no. 9, pp. 1073–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. U. N. Das, “Free convective MHD flow and heat transfer in a viscous incompressible fluid confined between a long vertical wavy wall and a parallel flat wall,” Indian Journal of Pure and Applied Mathematics, vol. 23, pp. 295–304, 1992. View at Google Scholar
  23. Y. Abd elmaboud and Kh. S. Mekheimer, “Unsteady pulsatile flow through a vertical constricted annulus with heat transfer,” Zeitschrift für Naturforschung A, vol. 67, pp. 185–194, 2012. View at Google Scholar
  24. B. Ničeno and E. Nobile, “Numerical analysis of fluid flow and heat transfer in periodic wavy channels,” International Journal of Heat and Fluid Flow, vol. 22, no. 2, pp. 156–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. Kh. S. Mekheimer, S. Z. A. Husseny, and Y. Abd Elmaboud, “Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel,” Numerical Methods for Partial Differential Equations, vol. 26, no. 4, pp. 747–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Sivaraj and B. Rushi Kumar, “Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion,” International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 3076–3089, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Taneja and N. C. Jain, “MHD flow with slip effects and temperature-dependent heat source in a viscous incompressible fluid confined between a long vertical wavy wall and a parallel flat wall,” Defence Science Journal, vol. 54, no. 1, pp. 21–29, 2004. View at Google Scholar · View at Scopus
  28. K. Walters, On Second-Order Effect in Elasticity,Plasticity and Fluid Mechanics, IUTAM Int. Symp., Pergamon Press, New York, NY, USA, 1964.
  29. A. C. Cogley, S. E. Giles, and W. G. Vincent, “Differential approximation to radiative heat transfer in a nongrey gas near equilibrium,” AIAA Journal, vol. 6, no. 3, pp. 551–553, 1968. View at Publisher · View at Google Scholar