Table of Contents
ISRN Microbiology
Volume 2013, Article ID 935736, 11 pages
http://dx.doi.org/10.1155/2013/935736
Review Article

Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity

Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrβe 5, 91058 Erlangen, Germany

Received 2 December 2012; Accepted 31 December 2012

Academic Editors: S. H. Flint, G. Koraimann, and T. Krishnan

Copyright © 2013 Andreas Burkovski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ventura, C. Canchaya, A. Tauch et al., “Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum,” Microbiology and Molecular Biology Reviews, vol. 71, no. 3, pp. 495–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Y. Zhi, W. J. Li, and E. Stackebrandt, “An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 3, pp. 589–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Bernard, “The genus Corynebacterium and other medically relevant coryneform-like bacteria,” Journal of Clinical Microbiology, vol. 50, no. 10, pp. 3152–3158, 2012. View at Publisher · View at Google Scholar
  4. J. Becker and C. Wittmann, “Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory,” Current Opinion in Biotechnology, vol. 23, no. 4, pp. 631–640, 2012. View at Publisher · View at Google Scholar
  5. A. A. Vertes, M. Inui, and H. Yukawa, “Postgenomic approaches to using corynebacteria as biocatalysts,” Annual Review of Microbiology, vol. 66, pp. 521–550, 2012. View at Publisher · View at Google Scholar
  6. A. M. Cerdeño-Tárraga, A. Efstratiou, L. G. Dover et al., “The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129,” Nucleic Acids Research, vol. 31, no. 22, pp. 6516–6523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ikeda and S. Nakagawa, “The Corynebacterium glutamicum genome: features and impacts on biotechnological processes,” Applied Microbiology and Biotechnology, vol. 62, no. 2-3, pp. 99–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kalinowski, B. Bathe, D. Bartels et al., “The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins,” Journal of Biotechnology, vol. 104, no. 1–3, pp. 5–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Trost, S. Götker, J. Schneider et al., “Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion,” BMC Genomics, vol. 11, no. 1, article 91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Schröder, A. Glaub, J. Schneider, E. Trost, and A. Tauch, “Draft genome sequence of Corynebacterium bovis DSM, 20582, which causes clinical mastitis in dairy cows,” Journal of Bacteriology, vol. 194, no. 16, article 4437, 2012. View at Publisher · View at Google Scholar
  11. E. Trost, J. Blom, C. Soares Sde et al., “Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria,” Endocarditis, and Pneumonia, Journal of Bacteriology, vol. 194, no. 12, pp. 3199–3215, 2012. View at Publisher · View at Google Scholar
  12. V. Sangal, N. P. Tucker, A. Burkovski, and P. A. Hoskisson, “Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC, 5011,” Journal of Bacteriology, vol. 194, no. 17, article 4738, 2012. View at Publisher · View at Google Scholar
  13. V. Sangal, N. P. Tucker, A. Burkovski, and P. A. Hoskisson, “The draft genome sequence of Corynebacterium diphtheriae bv. mitis NCTC, 3529 reveals significant diversity between the primary disease-causing biovars,” Journal of Bacteriology, vol. 194, no. 12, article 3269, 2012. View at Publisher · View at Google Scholar
  14. A. Tauch, O. Kaiser, T. Hain et al., “Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora,” Journal of Bacteriology, vol. 187, no. 13, pp. 4671–4682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Tauch, J. Schneider, R. Szczepanowski et al., “Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic Corynebacterium that lacks mycolic acids,” Journal of Biotechnology, vol. 136, no. 1-2, pp. 22–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. T. Cerdeira, A. C. Pinto, M. P. Schneider et al., “Whole-genome sequence of Corynebacterium pseudotuberculosis PAT10 strain isolated from sheep in Patagonia, Argentina,” Journal of Bacteriology, vol. 193, no. 22, pp. 6420–6421, 2011. View at Publisher · View at Google Scholar
  17. L. T. Cerdeira, M. P. Schneider, A. C. Pinto et al., “Complete genome sequence of Corynebacterium pseudotuberculosis strain CIP 52. 97, isolated from a horse in Kenya,” Journal of Bacteriology, vol. 193, no. 24, pp. 7025–7026, 2011. View at Publisher · View at Google Scholar
  18. T. Lopes, A. Silva, R. Thiago et al., “Complete genome sequence of Corynebacterium pseudotuberculosis strain Cp267, isolated from a llama,” Journal of Bacteriology, vol. 194, no. 13, pp. 3567–3568, 2012. View at Publisher · View at Google Scholar
  19. F. E. Pethick, A. F. Lainson, R. Yaga et al., “Complete genome sequences of Corynebacterium pseudotuberculosis strains 3/99-5 and 42/02-A, isolated from sheep in scotland and Australia, respectively,” Journal of Bacteriology, vol. 194, no. 17, pp. 4736–4737, 2012. View at Publisher · View at Google Scholar
  20. F. E. Pethick, A. F. Lainson, R. Yaga et al., “Complete genome sequence of Corynebacterium pseudotuberculosis strain 1/06-A, isolated from a Horse in North America,” Journal of Bacteriology, vol. 194, no. 16, pp. 4476–4476, 2012. View at Publisher · View at Google Scholar
  21. R. T. J. Ramos, A. Silva, A. R. Carneiro et al., “Genome sequence of the Corynebacterium pseudotuberculosis Cp316 strain, isolated from the abscess of a Californian horse,” Journal of Bacteriology, vol. 194, no. 23, pp. 6620–6621, 2012. View at Publisher · View at Google Scholar
  22. A. Silva, R. T. J. Ramos, A. R. Carneiro et al., “Complete genome sequence of Corynebacterium pseudotuberculosis Cp31, isolated from an Egyptian buffalo,” Journal of Bacteriology, vol. 194, no. 23, pp. 6663–6664, 2012. View at Publisher · View at Google Scholar
  23. A. Silva, M. P. C. Schneider, L. Cerdeira et al., “Complete genome sequence of Corynebacterium pseudotuberculosis I19, a strain isolated from a cow in Israel with bovine mastitis,” Journal of Bacteriology, vol. 193, no. 1, pp. 323–324, 2011. View at Publisher · View at Google Scholar
  24. E. Trost, L. Ott, J. Schneider et al., “The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence,” BMC Genomics, vol. 11, no. 1, article 728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Schröder, I. Maus, K. Meyer et al., “Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient,” BMC Genomics, vol. 13, no. 1, article 141, 2012. View at Publisher · View at Google Scholar
  26. E. Trost, A. Al-Dilaimi, P. Papavasiliou et al., “Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors,” BMC Genomics, vol. 12, article 383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Tauch, E. Trost, A. Tilker et al., “The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing,” Journal of Biotechnology, vol. 136, no. 1-2, pp. 11–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Schröder, I. Maus, E. Trost, and A. Tauch, “Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation,” BMC Genomics, vol. 12, article 545, 2011. View at Publisher · View at Google Scholar
  29. M. Daffé, “The cell envelope of corynebacteria,” in Handbook of Corynebacterium glutamicum, L. Eggeling and M. Bott, Eds., pp. 121–148, Taylor & Francis, Boca Raton, Fla, USA, 2005. View at Google Scholar
  30. L. Eggeling, S. B. Gurdyal, and L. Alderwick, “Structure and synthesis of the cell wall,” in Corynebacteria, A. Burkovski, Ed., pp. 267–294, Caister Academic Press, Norfolk, UK, 2008. View at Google Scholar
  31. M. Chami, N. Bayan, J. C. Dedieu, G. Leblon, E. Shechter, and T. Gulik-Krzywicki, “Organization of the outer layers of the cell envelope of Corynebacterium glutamicum: a combined freeze-etch electron microscopy and biochemical study,” Biology of the Cell, vol. 83, no. 2-3, pp. 219–229, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Marienfeld, E. M. Uhlemann, R. Schmid, R. Krämer, and A. Burkovski, “Ultrastructure of the Corynebacterium glutamicum cell wall,” Antonie van Leeuwenhoek, vol. 72, no. 4, pp. 291–297, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Puech, M. Chami, A. Lemassu et al., “Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane,” Microbiology, vol. 147, no. 5, pp. 1365–1382, 2001. View at Google Scholar · View at Scopus
  34. C. Hoffmann, A. Leis, M. Niederweis, J. M. Plitzko, and H. Engelhardt, “Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3963–3967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Niederweis, O. Danilchanka, J. Huff, C. Hoffmann, and H. Engelhardt, “Mycobacterial outer membranes: in search of proteins,” Trends in Microbiology, vol. 18, no. 3, pp. 109–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Hoischen and R. Kramer, “Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum,” Journal of Bacteriology, vol. 172, no. 6, pp. 3409–3416, 1990. View at Google Scholar · View at Scopus
  37. K. Nampoothiri, C. Hoischen, B. Bathe et al., “Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum,” Applied Microbiology and Biotechnology, vol. 58, no. 1, pp. 89–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Shibukawa, M. Kurima, and S. Oruchi, “L-Glutamic acid fermentation with molasses. XII. Relationship between the kind of phospholipids and their fatty acid composition in the mechanism of extracellular accumulation of L-glutamate,” Agricultural and Biological Chemistry, vol. 34, no. 8, pp. 1136–1141, 1970. View at Publisher · View at Google Scholar
  39. P. J. Brennan and D. P. Lehane, “The phospholipids of corynebacteria,” Lipids, vol. 6, no. 6, pp. 401–409, 1971. View at Publisher · View at Google Scholar · View at Scopus
  40. M. D. Collins, M. Goodfellow, and D. E. Minnikin, “Fatty acid composition of some mycolic acid-containing coryneform bacteria,” Journal of General Microbiology, vol. 128, no. 11, pp. 2503–2509, 1982. View at Google Scholar · View at Scopus
  41. D. E. Minnikin, M. Goodfellow, and M. D. Collins, “Lipid composition in the classification an identification of coryneform and relaxed taxa,” in Coryneform Bacteria, I. J. Bousfield and G. Galley, Eds., p. 85, Academic Press, London, UK, 1978. View at Google Scholar
  42. E. Radmacher, L. J. Alderwick, G. S. Besra et al., “Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum,” Microbiology, vol. 151, no. 7, pp. 2421–2427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Özcan, C. S. Ejsing, A. Shevchenko, A. Lipski, S. Morbach, and R. Krämer, “Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum,” Journal of Bacteriology, vol. 189, no. 20, pp. 7485–7496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. C. O. Rock and J. E. Cronan, “Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis,” Biochimica et Biophysica Acta, vol. 1302, no. 1, pp. 1–16, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Mishra, K. Krumbach, D. Rittmann et al., “Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching,” Molecular Microbiology, vol. 80, no. 5, pp. 1241–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. L. O. Moreira, A. L. Mattos-Guaraldi, and A. F. B. Andrade, “Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells,” Archives of Microbiology, vol. 190, no. 5, pp. 521–530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. K. Mishra, K. Krumbach, D. Rittmann et al., “Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant,” Microbiology, vol. 158, no. 7, pp. 1908–1917, 2012. View at Publisher · View at Google Scholar
  48. I. C. Sutcliffe, “Macroamphiphilic cell envelope components of Rhodococcus equi and closely related bacteria,” Veterinary Microbiology, vol. 56, no. 3-4, pp. 287–299, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. K. H. Schleifer and O. Kandler, “Peptidoglycan types of bacterial cell walls and their taxonomic implications,” Bacteriological Reviews, vol. 36, no. 4, pp. 407–477, 1972. View at Google Scholar · View at Scopus
  50. K. Kato, J. L. Strominger, and S. Kotani, “Structure of the cell wall of Corynebacterium diphtheriae. I. Mechanism of hydrolysis by the L-3 enzyme and the structure of the peptide,” Biochemistry, vol. 7, no. 8, pp. 2762–2773, 1968. View at Google Scholar · View at Scopus
  51. D. J. Scheffers and M. G. Pinho, “Bacterial cell wall synthesis: new insights from localization studies,” Microbiology and Molecular Biology Reviews, vol. 69, no. 4, pp. 585–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. L. G. Dover, A. M. Cerdeño-Tárraga, M. J. Pallen, J. Parkhill, and G. S. Besra, “Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae,” FEMS Microbiology Reviews, vol. 28, no. 2, pp. 225–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. K. J. C. Gibson, L. Eggeling, W. N. Maughan et al., “Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum,” The Journal of Biological Chemistry, vol. 278, no. 42, pp. 40842–40850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Letek, M. Fiuza, E. Ordóñez et al., “Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum,” Antonie van Leeuwenhoek, vol. 94, no. 1, pp. 99–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Valbuena, M. Letek, E. Ordóñez et al., “Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structures,” Molecular Microbiology, vol. 66, no. 3, pp. 643–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Letek, M. Fiuza, A. F. Villadangos, L. M. Mateos, and J. A. Gil, “Cytoskeletal proteins of Actinobacteria,” International Journal of Cell Biology, vol. 2012, Article ID 905832, 10 pages, 2012. View at Publisher · View at Google Scholar
  57. E. Lederer, A. Adam, R. Ciorbaru, J. F. Petit, and J. Wietzerbin, “Cell walls of mycobacteria and related organisms; chemistry and immunostimulant properties,” Molecular and Cellular Biochemistry, vol. 7, no. 2, pp. 87–104, 1975. View at Publisher · View at Google Scholar · View at Scopus
  58. M. McNeil, M. Daffe, and P. J. Brennan, “Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls,” The Journal of Biological Chemistry, vol. 265, no. 30, pp. 18200–18206, 1990. View at Google Scholar · View at Scopus
  59. L. J. Alderwick, L. G. Dover, M. Seidel et al., “Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-D-arabinose metabolism,” Glycobiology, vol. 16, no. 11, pp. 1073–1081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. L. J. Alderwick, E. Radmacher, M. Seidel et al., “Deletion of Cg-emb in Corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an Arabinan-deficient mutant with a cell wall galactan core,” The Journal of Biological Chemistry, vol. 280, no. 37, pp. 32362–32371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Seidel, L. J. Alderwick, H. L. Birch, H. Sahm, L. Eggeling, and G. S. Besra, “Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis,” The Journal of Biological Chemistry, vol. 282, no. 20, pp. 14729–14740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Seidel, L. J. Alderwick, H. Sahm, G. S. Besra, and L. Eggeling, “Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis,” Glycobiology, vol. 17, no. 2, pp. 210–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Gebhardt, X. Meniche, M. Tropis, R. Krämer, M. Daffé, and S. Morbach, “The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae,” Microbiology, vol. 153, no. 5, pp. 1424–1434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. H. Marchand, C. Salmeron, R. B. Raad et al., “Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum,” Journal of Bacteriology, vol. 194, no. 3, pp. 587–597, 2012. View at Publisher · View at Google Scholar
  65. D. Portevin, C. de Sousa-D'Auria, C. Houssin et al., “A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 314–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Gande, L. G. Dover, K. Krumbach et al., “The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis,” Journal of Bacteriology, vol. 189, no. 14, pp. 5257–5264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Portevin, C. de Sousa-D'Auria, H. Montrozier et al., “The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 8862–8874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Tzvetkov, C. Klopprogge, O. Zelder, and W. Liebl, “Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition,” Microbiology, vol. 149, no. 7, pp. 1659–1673, 2003. View at Google Scholar · View at Scopus
  69. A. Wolf, R. Krämer, and S. Morbach, “Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress,” Molecular Microbiology, vol. 49, no. 4, pp. 1119–1134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Tropis, X. Meniche, A. Wolf et al., “The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterineae,” The Journal of Biological Chemistry, vol. 280, no. 28, pp. 26573–26585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Joliff, L. Mathieu, V. Hahn et al., “Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex,” Molecular Microbiology, vol. 6, no. 16, pp. 2349–2362, 1992. View at Google Scholar · View at Scopus
  72. S. Brand, K. Niehaus, A. Pühler, and J. Kalinowski, “Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope,” Archives of Microbiology, vol. 180, no. 1, pp. 33–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. C. de Sousa-D'Auria, R. Kacem, V. Puech et al., “New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum,” FEMS Microbiology Letters, vol. 224, no. 1, pp. 35–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Kacem, C. de Sousa-D'Auria, M. Tropis et al., “Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum,” Microbiology, vol. 150, no. 1, pp. 73–84, 2004. View at Google Scholar · View at Scopus
  75. C. Varela, D. Rittmann, A. Singh et al., “MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria,” Chemistry and Biology, vol. 19, no. 4, pp. 498–506, 2012. View at Publisher · View at Google Scholar
  76. Y. Yang, F. Shi, G. Tao, and X. Wang, “Purification and structure analysis of mycolic acids in Corynebacterium glutamicum,” Journal of Microbiology, vol. 50, no. 2, pp. 235–240, 2012. View at Publisher · View at Google Scholar
  77. X. Meniche, C. Labarre, C. de Sousa-D'Auria et al., “Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition,” Journal of Bacteriology, vol. 191, no. 23, pp. 7323–7332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Indrigo, R. L. Hunter Jr., and J. K. Actor, “Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages,” Microbiology, vol. 149, no. 8, pp. 2049–2059, 2003. View at Google Scholar · View at Scopus
  79. G. C. Hard, “Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages,” Infection and Immunity, vol. 12, no. 6, pp. 1439–1449, 1975. View at Google Scholar · View at Scopus
  80. J. J. Tashjian and S. G. Campbell, “Interaction between caprine macrophages and Corynebacterium pseudotuberculosis: an electron microscopic study,” American Journal of Veterinary Research, vol. 44, no. 4, pp. 690–693, 1983. View at Google Scholar · View at Scopus
  81. M. Chami, K. Andréau, A. Lemassu et al., “Priming and activation of mouse macrophages by trehalose 6,6′-dicorynomycolate vesicles from Corynebacterium glutamicum,” FEMS Immunology and Medical Microbiology, vol. 32, no. 2, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. A. L. Mattos-Guaraldi, E. A. Cappelli, J. O. Previato, L. C. D. Formiga, and A. F. B. Andrade, “Characterization of surface saccharides in two Corynebacterium diphtheriae strains,” FEMS Microbiology Letters, vol. 170, no. 1, pp. 159–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Ortalo-Magné, A. Lemassu, M. A. Lanéelle et al., “Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species,” Journal of Bacteriology, vol. 178, no. 2, pp. 456–461, 1996. View at Google Scholar · View at Scopus
  84. N. Hansmeier, T. C. Chao, J. Kalinowski, A. Pühler, and A. Tauch, “Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae,” Proteomics, vol. 6, no. 8, pp. 2465–2476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Hansmeier, T. C. Chao, A. Pühler, A. Tauch, and J. Kalinowski, “The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032,” Proteomics, vol. 6, no. 1, pp. 233–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Hermann, M. Finkemeier, W. Pfefferle, G. Wersch, R. Krämer, and A. Burkovski, “Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins,” Electrophoresis, vol. 21, no. 3, pp. 654–659, 2000. View at Publisher · View at Google Scholar
  87. N. Hansmeier, T. C. Chao, S. Daschkey et al., “A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411,” Proteomics, vol. 7, no. 7, pp. 1076–1096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. L. G. Pacheco, S. E. Slade, N. Seyffert et al., “A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis,” BMC Microbiology, vol. 11, article 12, 2011. View at Publisher · View at Google Scholar
  89. T. Lichtinger, F. G. Rieß, A. Burkovski et al., “The low-molecular-mass subunit of the cell wall channel of the gram-positive Corynebacterium glutamicum: immunological localization, cloning and sequencing of its gene porA,” European Journal of Biochemistry, vol. 268, no. 2, pp. 462–469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Hünten, N. Costa-Riu, D. Palm, F. Lottspeich, and R. Benz, “Identification and characterization of PorH, a new cell wall channel of Corynebacterium glutamicum,” Biochimica et Biophysica Acta - Biomembranes, vol. 1715, no. 1, pp. 25–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Costa-Riu, E. Maier, A. Burkovski, R. Krämer, F. Lottspeich, and R. Benz, “Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium Corynebacterium glutamicum,” Molecular Microbiology, vol. 50, no. 4, pp. 1295–1308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Costa-Riu, A. Burkovski, R. Krämer, and R. Benz, “PorA represents the major cell wall channel of the gram-positive bacterium Corynebacterium glutamicum,” Journal of Bacteriology, vol. 185, no. 16, pp. 4779–4786, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Hünten, B. Schiffler, F. Lottspeich, and R. Benz, “PorH, a new channel-forming protein present in the cell wall of Corynebacterium efficiens and Corynebacterium callunae,” Microbiology, vol. 151, no. 7, pp. 2429–2438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Schiffler, E. Barth, M. Daffé, and R. Benz, “Corynebacterium diphtheriae: identification and characterization of a channel-forming protein in the cell wall,” Journal of Bacteriology, vol. 189, no. 21, pp. 7709–7719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. M. D. Collins, R. A. Burton, and D. Jones, “Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin,” FEMS Microbiology Letters, vol. 49, no. 3, pp. 349–352, 1988. View at Google Scholar · View at Scopus
  96. C. Barreau, F. Bimet, M. Kiredjian, N. Rouillon, and C. Bizet, “Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin,” Journal of Clinical Microbiology, vol. 31, no. 8, pp. 2085–2090, 1993. View at Google Scholar · View at Scopus
  97. U. Dörner, B. Schiffler, M. A. Lanéelle, M. Daffé, and R. Benz, “Identification of a cell-wall channel in the corynemycolic acid-free Gram-positive bacterium Corynebacterium amycolatum,” International Microbiology, vol. 12, no. 1, pp. 29–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Barth, M. A. Barceló, C. Kläckta, and R. Benz, “Reconstitution experiments and gene deletions reveal the existence of two-component major cell wall channels in the genus Corynebacterium,” Journal of Bacteriology, vol. 192, no. 3, pp. 786–800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Huc, X. Meniche, R. Benz et al., “O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria,” The Journal of Biological Chemistry, vol. 285, no. 29, pp. 21908–21912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Bayan, C. Houssin, M. Chami, and G. Leblon, “Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications,” Journal of Biotechnology, vol. 104, no. 1–3, pp. 55–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Chami, N. Bayan, J. L. Peyret, T. Gulik-Krzywicki, G. Leblon, and E. Shechter, “The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain,” Molecular Microbiology, vol. 23, no. 3, pp. 483–492, 1997. View at Google Scholar · View at Scopus
  102. S. Scheuring, H. Stahlberg, M. Chami, C. Houssin, J. L. Rigaud, and A. Engel, “Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope,” Molecular Microbiology, vol. 44, no. 3, pp. 675–684, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Hansmeier, F. W. Bartels, R. Ros et al., “Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy,” Journal of Biotechnology, vol. 112, no. 1-2, pp. 177–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Dupres, D. Alsteens, K. Pauwels, and Y. F. Dufrêne, “In vivo imaging of S-layer nanoarrays on Corynebacterium glutamicum,” Langmuir, vol. 25, no. 17, pp. 9653–9655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. E. R. Vimr, K. A. Kalivoda, E. L. Deszo, and S. M. Steenbergen, “Diversity of microbial sialic acid metabolism,” Microbiology and Molecular Biology Reviews, vol. 68, no. 1, pp. 132–153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. B. S. Blumberg and I. Warren, “The effect of sialidase on transferrins and other serum proteins,” Biochimica et Biophysica Acta, vol. 50, no. 1, pp. 90–101, 1961. View at Google Scholar · View at Scopus
  107. S. Kim, D. B. Oh, O. Kwon, and H. A. Kang, “Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae,” Journal of Biochemistry, vol. 147, no. 4, pp. 523–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. L. de Oliveira Moreira, A. F. B. Andrade, M. D. D. Vale et al., “Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 5907–5913, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Warren and C. W. Spearing, “Sialidase (Neuraminidase) of Corynebacterium diphtheriae,” Journal of Bacteriology, vol. 86, pp. 950–955, 1963. View at Google Scholar · View at Scopus
  110. R. Yanagawa, K. Otsuki, and T. Tokui, “Electron microscopy of fine structure of Corynebacterium renale with special reference to pili,” Japanese Journal of Veterinary Research, vol. 16, no. 1, pp. 31–37, 1968. View at Google Scholar · View at Scopus
  111. E. A. Rogers, A. Das, and H. Ton-That, “Adhesion by pathogenic corynebacteria,” Advances in Experimental Medicine and Biology, vol. 715, pp. 91–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Ton-That and O. Schneewind, “Assembly of pili in Gram-positive bacteria,” Trends in Microbiology, vol. 12, no. 5, pp. 228–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Dramsi, P. Trieu-Cuot, and H. Bierne, “Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria,” Research in Microbiology, vol. 156, no. 3, pp. 289–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Mandlik, A. Swierczynski, A. Das, and H. Ton-That, “Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells,” Molecular Microbiology, vol. 64, no. 1, pp. 111–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Ott, M. Höller, J. Rheinlaender, T. E. Schäffer, M. Hensel, and A. Burkovski, “Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells,” BMC Microbiology, vol. 10, article 257, 2010. View at Publisher · View at Google Scholar
  116. J. Rheinlaender, A. Gräbner, L. Ott, A. Burkovski, and T. E. Schaffer, “Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy,” European Biophysics Journal, vol. 41, no. 6, pp. 561–570, 2012. View at Publisher · View at Google Scholar
  117. A. V. Colombo, R. Hirata Jr., C. M. R. de Souza et al., “Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes,” FEMS Microbiology Letters, vol. 197, no. 2, pp. 235–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. P. S. Sabbadini, M. C. Assis, E. Trost et al., “Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells,” Microbial Pathogenesis, vol. 52, no. 3, pp. 165–176, 2012. View at Publisher · View at Google Scholar
  119. L. Ott, M. Höller, R. G. Gerlach et al., “Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells,” BMC Microbiology, vol. 10, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. V. Anantharaman and L. Aravind, “Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes,” Genome Biology, vol. 4, no. 2, article R11, 2003. View at Google Scholar · View at Scopus
  121. Y. Tsuge, H. Ogino, H. Teramoto, M. Inui, and H. Yukawa, “Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R,” Journal of Bacteriology, vol. 190, no. 24, pp. 8204–8214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Tateno, K. Hatada, T. Tanaka, H. Fukuda, and A. Kondo, “Development of novel cell surface display in Corynebacterium glutamicum using porin,” Applied Microbiology and Biotechnology, vol. 84, no. 4, pp. 733–739, 2009. View at Publisher · View at Google Scholar · View at Scopus