Table of Contents
ISRN Geology
Volume 2013 (2013), Article ID 936198, 9 pages
http://dx.doi.org/10.1155/2013/936198
Research Article

Record of the Climatic Variability and the Sedimentary Dynamics during the Last Two Millennia at Sebkha Dkhila, Eastern Tunisia

1National Engineering School of Sfax, University of Sfax, Road of Soukra, km 4, 3038 Sfax, Tunisia
2RU: Sedimentary Dynamics and Environment (DSE) (Code 03/UR/10-03), National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
3Laboratory of Water Energy and Environment, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
4Faculty of Sciences of Sfax, University of Sfax, Road of Soukra, km 4, 3038 Sfax, Tunisia
5Higher Institute of Biotechnology of Monastir, Tahar Haded Avenue, University of Monastir, Road Sallem Bechir, BP n56, 5000 Monastir, Tunisia

Received 9 April 2013; Accepted 26 May 2013

Academic Editors: J. P. Suc and Q. Xu

Copyright © 2013 Elhoucine Essefi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper aimed to study the record of the climatic variability during the last two millennia within the sebkha of Dkhila. Six climatic stages were recognized along the 104 cm core: the Warming Present (WP), the Late Little Ice Age (Late LIA), the Early Little Ice Age (ELIA), the Medieval Climatic Anomaly (MCA), the Dark Age (DA), and the Roman Warm Period (RWP). The WP stretches along the uppermost 1 cm with a high grey scale as sign of a dry climate. The Late LIA is located between 1 cm and 6 cm. The ELIA is located between 6 cm and 40 cm. The MCA spanning from 40 cm to 72 cm is marked by a sharp increase of the GS revealing a wet period. The DA appears along the part between 72 cm and 84 cm; a shift from light to dark sediments is recorded. The RWP appears between 84 cm and 104 cm. Based on the grain size distribution, two low frequency cycles were identified indicating radical global changes of climatic conditions, the differential tectonics, and the groundwater fluctuations. On the other hand, high frequency cycles indicate local modifications of the climatic conditions.