Table of Contents
ISRN Astronomy and Astrophysics
Volume 2013 (2013), Article ID 939876, 4 pages
http://dx.doi.org/10.1155/2013/939876
Research Article

The Localized Energy Distribution of Dark Energy Star Solutions

Department of Mathematics, Physics and Statistics, University of the Sciences in Philadelphia, 600 S. 43rd Street, Philadelphia, PA 19104, USA

Received 20 January 2013; Accepted 18 February 2013

Academic Editors: F. Crawford and H. Zhao

Copyright © 2013 Paul Halpern and Michael Pecorino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Einstein, “Zur allgemeinen Relativitätstheorie,” Preußische Akademie der Wissenschaften zu Berlin, vol. 47, p. 778, 1915. View at Google Scholar
  2. A. Papapetrou, “Einstein's theory of gravitation and flat space,” Proceedings of the Royal Irish Academy. Section A, vol. 52, p. 11, 1948. View at Google Scholar
  3. L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, Pergamon Press, Oxford, UK, 1962.
  4. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, NY, USA, 1972.
  5. C. Møller, “On the localization of the energy of a physical system in the general theory of relativity,” Annals of Physics, vol. 4, no. 4, pp. 347–371, 1958. View at Google Scholar
  6. C. Møller, “Further remarks on the localization of the energy in the general theory of relativity,” Annals of Physics, vol. 12, no. 1, pp. 118–133, 1961. View at Google Scholar
  7. K. S. Virbhadra, “Energy associated with a Kerr-Newman black hole,” Physical Review D, vol. 41, no. 4, pp. 1086–1090, 1990. View at Publisher · View at Google Scholar
  8. J. M. Aguirregabiria, A. Chamorro, and K. S. Virbhadra, “Energy and angular momentum of charged rotating black holes,” General Relativity and Gravitation, vol. 28, no. 11, pp. 1393–1400, 1996. View at Google Scholar · View at Scopus
  9. K. S. Virbhadra, “Naked singularities and Seifert's conjecture,” Physical Review D, vol. 60, no. 10, Article ID 104041, 6 pages, 1999. View at Publisher · View at Google Scholar
  10. I. Radinschi and I. C. Yang, “On the energy of string black holes,” in New Developments in String Theory Research, S. A. Grece, Ed., Nova Science, New York, NY, USA, 2005. View at Google Scholar
  11. I. Radinschi and B. Ciobanu, “Weinberg energy-momentum complex for a stringy black hole solution,” in Fifty Years of Romanian Astrophysics, vol. 895 of AIP Conference Proceedings, pp. 329–332, Bucharest, Romania, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Radinschi, F. Rahaman, and A. Banerjee, “On the energy of Hořava-lifshitz black holes,” International Journal of Theoretical Physics, vol. 50, no. 9, pp. 2906–2916, 2011. View at Publisher · View at Google Scholar
  13. I. Radinschi, F. Rahaman, and A. Ghosh, “On the energy of charged black holes in generalized dilaton-axion gravity,” International Journal of Theoretical Physics, vol. 49, no. 5, pp. 943–956, 2010. View at Publisher · View at Google Scholar
  14. I. Radinschi, T. Grammenos, and A. Spanou, “Localization of energy for a regular black hole solution in an asymptotically de Sitter spacetime geometry,” Central European Journal of Physics, vol. 9, no. 5, pp. 1173–1181, 2011. View at Publisher · View at Google Scholar
  15. I. Radinschi, T. Grammenos, and A. Spanou, “Distribution of energy-momentum in a schwarzschild-quintessence space-time geometry,” http://arxiv.org/abs/1204.1663.
  16. E. C. Vagenas, “Energy distribution in the dyadosphere of a Reissner-Nordström black hole in Møller's prescription,” Modern Physics Letters A, vol. 21, no. 25, pp. 1947–1956, 2006. View at Publisher · View at Google Scholar
  17. M. S. Berman, “Energy and angular momentum of dilaton black holes,” Revista Mexicana de Astronomía y Astrofísica, vol. 44, pp. 285–291, 2008. View at Google Scholar
  18. M. Sharif and A. Jawad, “Energy contents of some rotating spacetimes in teleparallel gravity,” Astrophysics and Space Science, vol. 331, no. 1, pp. 321–329, 2010. View at Publisher · View at Google Scholar
  19. P. Halpern, “Energy distribution of a charged black hole with a minimally coupled scalar field,” Astrophysics and Space Science, vol. 313, no. 4, pp. 357–361, 2008. View at Publisher · View at Google Scholar
  20. R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters, Section B, vol. 545, no. 1-2, pp. 23–29, 2002. View at Publisher · View at Google Scholar
  21. A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, 1998. View at Google Scholar
  22. S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, vol. 517, no. 2, pp. 565–586, 1999. View at Publisher · View at Google Scholar
  23. S. S. Yazadjiev, “Exact dark energy star solutions,” Physical Review D, vol. 83, no. 12, Article ID 127501, 4 pages, 2011. View at Publisher · View at Google Scholar