Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 965310, 11 pages
http://dx.doi.org/10.5402/2013/965310
Research Article

Enhanced Cellulase Production from Bacillus subtilis by Optimizing Physical Parameters for Bioethanol Production

1Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
2Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
3Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab 147004, India

Received 27 December 2012; Accepted 12 January 2013

Academic Editors: E. Formentin, W. A. Kues, O. Pontes, S. Sanyal, and J. Sereikaite

Copyright © 2013 Deepmoni Deka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Bhat, “Cellulases and related enzymes in biotechnology,” Biotechnology Advances, vol. 18, no. 5, pp. 355–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. O. J. Sánchez and C. A. Cardona, “Trends in biotechnological production of fuel ethanol from different feedstocks,” Bioresource Technology, vol. 99, no. 13, pp. 5270–5295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Mawadza, F. C. Boogerd, R. Zvauya, and H. W. Van Verseveld, “Influence of environmental factors on endo-β-1,4-glucanase production by Bacillus HR68, isolated from a Zimbabwean hot spring,” Antonie van Leeuwenhoek, vol. 69, no. 4, pp. 363–369, 1996. View at Google Scholar · View at Scopus
  4. G. Rastogi, G. L. Muppidi, R. N. Gurram et al., “Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 4, pp. 585–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. I. Jo, Y. J. Lee, B. K. Kim et al., “Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3,” Biotechnology and Bioprocess Engineering, vol. 13, no. 2, pp. 182–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Lejeune and G. V. Baron, “Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation,” Applied Microbiology and Biotechnology, vol. 43, no. 2, pp. 249–258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. A. Chipeta, J. C. Du Preez, and L. Christopher, “Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 6, pp. 587–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. H. Lee, B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee, “Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53,” Enzyme and Microbial Technology, vol. 46, no. 1, pp. 38–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Latifian, Z. Hamidi-Esfahani, and M. Barzegar, “Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions,” Bioresource Technology, vol. 98, no. 18, pp. 3634–3637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Deka, P. Bhargavi, A. Sharma, D. Goyal, M. Jawed, and A. Goyal, “Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates,” Enzyme Research, vol. 2011, Article ID 151656, 8 pages, 2011. View at Publisher · View at Google Scholar
  11. S. Nagar, V. K. Gupta, D. Kumar, L. Kumar, and R. C. Kuhad, “Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 1, pp. 71–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tagaki, S. Abe, G. H. Emert, S. Suzuki, and N. Yata, “A method for the production of alcohol directly from cellulose using cellulase and yeast,” in Proceedings of Bioconversion of Cellulosic Substances Into Energy, Chemicals and Microbial Protein, pp. 551–571, 1977. View at Google Scholar
  13. R. L. Howard, E. Abotsi, E. L. J. Van Rensburg, and S. Howard, “Lignocellulose biotechnology: issues of bioconversion and enzyme production,” African Journal of Biotechnology, vol. 2, no. 12, pp. 702–733, 2003. View at Google Scholar · View at Scopus
  14. R. K. Sukumaran, R. R. Singhania, G. M. Mathew, and A. Pandey, “Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production,” Renewable Energy, vol. 34, no. 2, pp. 421–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. da Silveira dos Santos, A. C. Camelo, K. C. P. Rodrigues, L. C. Carlos, and N. Pereira Jr., “Ethanol production from sugarcane bagasse by Zymomonas mobilis using Simultaneous Saccharification and Fermentation (SSF) process,” Applied Biochemistry and Biotechnology, vol. 161, no. 1–8, pp. 93–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Derringer and R. Suich, “Simultaneous determination of several response variables,” Journal Quality Technology, vol. 12, no. 4, pp. 214–219, 1980. View at Google Scholar
  17. E. C. Harrington, “The desirability function,” Industrial Quality Control, vol. 21, no. 10, pp. 494–498, 1965. View at Google Scholar
  18. B. C. Okeke and S. K. C. Obi, “Saccharification of agro-waste materials by fungal cellulases and hemicellulases,” Bioresource Technology, vol. 51, no. 1, pp. 23–27, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresource Technology, vol. 83, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Nelson, “A photometric adaptation of the Somogyi method for the determination of glucose,” Journal of Biological Chemistry, vol. 153, pp. 375–380, 1944. View at Google Scholar
  21. M. Somogyi, “A new reagent for the determination of sugars,” Journal of Biological Chemistry, vol. 160, pp. 61–68, 1945. View at Google Scholar
  22. H. B. Seo, H. J. Kim, O. K. Lee, J. H. Ha, H. Y. Lee, and K. H. Jung, “Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 2, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Tanyildizi, D. Özer, and M. Elibol, “Optimization of α-amylase production by Bacillus sp. using response surface methodology,” Process Biochemistry, vol. 40, no. 7, pp. 2291–2296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Singh, J. C. Du Preez, B. Pillay, and B. A. Prior, “The production of hemicellulases by Thermomyces lanuginosus strain SSBP: influence of agitation and dissolved oxygen tension,” Applied Microbiology and Biotechnology, vol. 54, no. 5, pp. 698–704, 2000. View at Google Scholar · View at Scopus
  25. G. Rastogi, A. Bhalla, A. Adhikari et al., “Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains,” Bioresource Technology, vol. 101, no. 22, pp. 8798–8806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Purkarthofer, M. Sinner, and W. Steiner, “Effect of shear rate and culture PH on the production of xylanase by Thermomyces lanuginosus,” Biotechnology Letters, vol. 15, no. 4, pp. 405–410, 1993. View at Google Scholar · View at Scopus
  27. A. K. Ray, A. Bairagi, K. Sarkar Ghosh, and S. K. Sen, “Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut,” Acta Ichthyologica et Piscatoria, vol. 37, no. 1, pp. 47–53, 2007. View at Google Scholar · View at Scopus
  28. H. Ariffin, M. A. Hassan, U. K. M. Shah, N. Abdullah, F. M. Ghazali, and Y. Shirai, “Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3,” Journal of Bioscience and Bioengineering, vol. 106, no. 3, pp. 231–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Sohail, R. Siddiqi, A. Ahmad, and S. A. Khan, “Cellulase production from Aspergillus niger MS82: effect of temperature and pH,” New Biotechnology, vol. 25, no. 6, pp. 437–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. I. Rajoka, “Influence of various fermentation variables on exo-glucanase production in Cellulomonas flavigena,” Electronic Journal of Biotechnology, vol. 7, no. 3, pp. 256–263, 2004. View at Google Scholar · View at Scopus
  31. Y. Liang, Z. Feng, J. Yesuf, and J. W. Blackburn, “Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527,” Applied Biochemistry and Biotechnology, vol. 160, no. 6, pp. 1841–1852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Beukes and B. I. Pletschke, “Effect of sulfur-containing compounds on Bacillus cellulosome-associated CMCase and Avicelase activities,” FEMS Microbiology Letters, vol. 264, no. 2, pp. 226–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Jahani, M. Alizadeh, M. Pirozifard, and A. Qudsevali, “Optimization of enzymatic degumming process for rice bran oil using response surface methodology,” Food Science and Technology, vol. 41, no. 10, pp. 1892–1898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X. H. Júlio, P. F. Hertz, and M. A. Z. Ayub, “Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation,” Brazilian Journal of Microbiology, vol. 33, no. 3, pp. 213–218, 2002. View at Google Scholar · View at Scopus
  35. Y. Yamashita, A. Kurosumi, C. Sasaki, and Y. Nakamura, “Ethanol production from paper sludge by immobilized Zymomonas mobilis,” Biochemical Engineering Journal, vol. 42, no. 3, pp. 314–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Sasikumar T and Viruthagiri, “Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse-kinetics and modeling,” International Journal of Chemical and Biological Engineering, vol. 3, no. 2, pp. 57–64, 2010. View at Google Scholar