Table of Contents
ISRN Meteorology
Volume 2013, Article ID 972713, 8 pages
http://dx.doi.org/10.1155/2013/972713
Research Article

Role of Four-Dimensional Data Assimilation on Track and Intensity of Severe Cyclonic Storms

Indian Institute of Tropical Meteorology, Pune 411 008, India

Received 20 December 2012; Accepted 27 January 2013

Academic Editors: T. Georgiadis, A. Saha, and D.-Y. Wang

Copyright © 2013 Radhika D. Kanase and P. S. Salvekar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, London, UK, 2003.
  2. I. M. Navon, “Data assimilation for numerical weather prediction: a review,” in Data Assimilation For Atmospheric, Oceanic And Hydrologic Applications, S. K. Park and L. Xu, Eds., pp. 21–65, Springer, Berlin, Germany, 2009. View at Google Scholar
  3. Vinodkumar, A. Chandrasekar, K. Alapaty, and D. S. Niyogi, “The effect of a surface data assimilation technique and the traditional four-dimensional data assimilation on the simulation of a monsoon depression over India using a mesoscale model,” Natural Hazards, vol. 42, no. 2, pp. 439–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. V. F. Xavier, A. Chandrasekar, H. Rahman, D. Niyogi, and K. Alapaty, “The effect of satellite and conventional meteorological data assimilation on the mesoscale modeling of monsoon depressions over India,” Meteorology and Atmospheric Physics, vol. 101, no. 1-2, pp. 65–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Park and D. Zupanski, “Four-dimensional variational data assimilation for mesoscale and storm-scale applications,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 173–208, 2003. View at Publisher · View at Google Scholar
  6. L. M. Leslie, J. F. Lemarshall, R. P. Morison et al., “Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data,” Monthly Weather Review, vol. 126, no. 5, pp. 1248–1257, 1998. View at Google Scholar · View at Scopus
  7. J. Le Marshall, L. Leslie, R. Morison, N. Pescod, R. Seecamp, and C. Spinoso, “Recent developments in the continuous assimilation of satellite wind data for tropical cyclone track forecasting,” Advances in Space Research, vol. 25, no. 5, pp. 1077–1080, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Zhang, Q. Xiao, and P. J. Fitzpatrick, “The impact of multisatellite data on the initialization and simulation of Hurricane Lili's (2002) rapid weakening phase,” Monthly Weather Review, vol. 135, no. 2, pp. 526–548, 2007. View at Publisher · View at Google Scholar
  9. Y. H. Kim, E. H. Jeon, D. E. Chang, H. S. Lee, and J. I. Park, “The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting,” Asia-Pacific Journal of Atmospheric Sciences, vol. 46, no. 3, pp. 287–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Mukhopadhyay, J. Sanjay, W. R. Cotton, and S. S. Singh, “Impact of surface meteorological observations on RAMS forecast of monsoon weather systems over the Indian region,” Meteorology and Atmospheric Physics, vol. 90, no. 1-2, pp. 77–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sandeep, A. Chandrasekar, and D. Singh, “The impact of assimilation of AMSU data for the prediction of a tropical cyclone over India using a mesoscale model,” International Journal of Remote Sensing, vol. 27, no. 20, pp. 4621–4653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. V. Srinivas, V. Yesubabu, R. Venkatesan, and S. S. V. S. Ramarkrishna, “Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal Tropical Cyclone of November 2008 near Tamilnadu using WRF model,” Meteorology and Atmospheric Physics, vol. 110, no. 1, pp. 19–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. V. Srinivas, V. Yesubabu, K. B. R. R. Hariprasad, S. S. V. Ramakrishna, and B. Venkatraman, “Real-time prediction of a severe cyclone ‘Jal’ over Bay of Bengal using a high-resolution mesoscale model WRF (ARW),” Natural Hazards, vol. 65, no. 1, pp. 331–357, 2013. View at Publisher · View at Google Scholar
  14. “A report on cyclonic disturbances over North Indian Ocean during 2009,” RSMC Report, India Meteorological Department, New Delhi, India, 2010.
  15. “A report on cyclonic disturbances over North Indian Ocean during 2010,” RSMC Report, India Meteorological Department, New Delhi, India, 2011.
  16. W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the Advanced Research WRF version 3,” NCAR Technical Note 475, 2008, http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.
  17. D. R. Stauffer and N. L. Seaman, “Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data,” Monthly Weather Review, vol. 118, no. 6, pp. 1250–1277, 1990. View at Google Scholar · View at Scopus
  18. D. R. Stauffer and N. L. Seaman, “Multiscale four-dimensional data assimilation,” Journal of Applied Meteorology, vol. 33, no. 3, pp. 416–434, 1994. View at Google Scholar · View at Scopus
  19. D. R. Stauffer, N. L. Seaman, and F. S. Binkowski, “Use of four-dimensional data assimilation in a limited-area mesoscale model Part II: effects of data assimilation within the planetary boundary layer,” Monthly Weather Review, vol. 119, no. 3, pp. 734–754, 1991. View at Google Scholar · View at Scopus