Table of Contents
ISRN Renewable Energy
Volume 2014 (2014), Article ID 107278, 6 pages
http://dx.doi.org/10.1155/2014/107278
Research Article

Production of Biodiesel from Lipid of Porphyridium cruentum through Ultrasonic Method

Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia

Received 17 January 2014; Accepted 18 February 2014; Published 10 March 2014

Academic Editors: T. M. I. Mahlia and J. Zhang

Copyright © 2014 Raymond Kwangdinata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Triantoro, “Microalgae scenedesmus sp. as one alternative of raw materials biodiesel in Indonesia,” Scientific Paper, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Yogyakarta, Indonesia, 2008. View at Google Scholar
  2. O. Rachmaniah, R. D. Setyarini, and L. Maulida, “Selection of algae oil extraction method of chlorella sp. and predictions for biodiesel production,” in Seminar of Chemical Engineering Soehadi Reksowardojo, Department of Chemical Engineering, Faculty of Industrial Technology, Tenth of November Institute of Technology, Surabaya, Indonesia, 2010. View at Google Scholar
  3. E. R. Yosta, D. W. Harimurti, and O. Rachmaniah, Preliminary Study: Extraction of Algae Oil from Spirulina sp. as the New Discourse of Raw Material Alternative on Process of Biodiesel Production, Tenth of November Institute of Technology, Surabaya, Indonesia, 2009.
  4. Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, “Biofuels from microalgae,” Biotechnology Progress, vol. 24, no. 4, pp. 815–820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Mata, A. A. Martins, and N. S. Caetano, “Microalgae for biodiesel production and other applications: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 217–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. S. Araujo, L. J. B. L. Matos, L. R. B. Gonçalves, F. A. N. Fernandes, and W. R. L. Farias, “Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains,” Bioresource Technology, vol. 102, no. 8, pp. 5248–5250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. Ehimen, Z. F. Sun, and C. G. Carrington, “Variables affecting the in situ transesterification of microalgae lipids,” Fuel, vol. 89, no. 3, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Salim, R. Bosma, M. H. Vermuë, and R. H. Wijffels, “Harvesting of microalgae by bio-flocculation,” Journal of Applied Phycology, vol. 23, no. 5, pp. 849–855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Uduman, Y. Qi, M. K. Danquah, and A. F. A. Hoadley, “Marine microalgae flocculation and focused beam reflectance measurement,” Chemical Engineering Journal, vol. 162, no. 3, pp. 935–940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Papazi, P. Makridis, and P. Divanach, “Harvesting Chlorella minutissima using cell coagulants,” Journal of Applied Phycology, vol. 22, no. 3, pp. 349–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Vandamme, I. Foubert, B. Meesschaert, and K. Muylaert, “Flocculation of microalgae using cationic starch,” Journal of Applied Phycology, vol. 22, no. 4, pp. 525–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Benemann, “CO2 mitigation with microalgae systems,” Energy Conversion and Management, vol. 38, no. 1, pp. S475–S479, 1997. View at Google Scholar · View at Scopus
  13. M. J. Haas, K. M. Scott, T. A. Foglia, and W. N. Marmer, “The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks,” Journal of the American Oil Chemists' Society, vol. 84, no. 10, pp. 963–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Supardan, “The use of ultrasonic method for transesterification of used cooking oil,” Journal of Chemical and Environmental Engineering, vol. 8, no. 1, pp. 11–16, 2011. View at Google Scholar
  15. R. E. Armenta, M. Vinatoru, A. M. Burja, J. A. Kralovec, and C. J. Barrow, “Transesterification of fish oil to produce fatty acid ethyl esters using ultrasonic energy,” Journal of the American Oil Chemists' Society, vol. 84, no. 11, pp. 1045–1052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Stavarache, M. Vinatoru, R. Nishimura, and Y. Maeda, “Fatty acids methyl esters from vegetable oil by means of ultrasonic energy,” Ultrasonics Sonochemistry, vol. 12, no. 5, pp. 367–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, and A. Ishizaki, “Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties,” Process Biochemistry, vol. 37, no. 1, pp. 65–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Suslick, Y. Didenko, M. M. Fang et al., “Acoustic cavitation and its chemical consequences,” Philosophical Transactions of the Royal Society A, vol. 357, no. 1751, pp. 335–353, 1999. View at Google Scholar · View at Scopus
  19. L. H. Thompson and L. K. Doraiswamy, “Sonochemistry: science and engineering,” Industrial and Engineering Chemistry Research, vol. 38, no. 4, pp. 1215–1249, 1999. View at Google Scholar · View at Scopus
  20. Seafdec, Prawn Hatchery Design and Operational, Aquaculture Extention Manual 9, Aquaculture Department, Tigbauan, Philippines, 1985.
  21. S. Rasoul-Amini, N. Montazeri-Najafabady, M. A. Mobasher, S. Hoseini-Alhashemi, and Y. Ghasemi, “Chlorella sp.: a new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor,” Applied Energy, vol. 88, no. 10, pp. 3354–3356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Shiho, M. Kawachi, K. Horioko et al., “Business evaluation of a green microalgae Botryococcus braunii oil production system,” Procedia Environmental Sciences, vol. 15, pp. 90–109, 2012. View at Publisher · View at Google Scholar
  23. H. Y. El-Kassas, “Growth and fatty acid profile of the marine microalga Picochlorum Sp. grown under nutrient stress conditions,” Egytian Journal of Aquatics Research, vol. 39, pp. 233–239, 2013. View at Publisher · View at Google Scholar
  24. I. Aziz, S. Nurbayati, and B. Ulum, “Production of biodiesel from cooking oil by esterification and transesterification method,” Valensi, vol. 2, no. 3, pp. 443–448, 2011. View at Google Scholar
  25. I. H. S. Nirwana, Effect of Stirring Speed for Biodiesel Production from Jatropha Oil (Jatropha curca L.) by Using Catalysts Abu Tandan Sawit, Research Institue, Riau University, Riau, Indonesia, 2012.
  26. G. Knothe, “Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,” Fuel Processing Technology, vol. 86, no. 10, pp. 1059–1070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. M. Azam, A. Waris, and N. M. Nahar, “Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India,” Biomass and Bioenergy, vol. 29, no. 4, pp. 293–302, 2005. View at Publisher · View at Google Scholar · View at Scopus