Table of Contents
ISRN Analytical Chemistry
Volume 2014, Article ID 132020, 5 pages
http://dx.doi.org/10.1155/2014/132020
Research Article

Analytical Method Development and Validation of Solifenacin in Pharmaceutical Dosage Forms by RP-HPLC

1Vignan Pharmacy College, Vadlamudi, Guntur, Andhra Pradesh 522213, India
2Jawaharlal Nehru Technological University Anantapur, Andhra Pradesh 515002, India
3Vaagdevi College of Pharmacy, Gurazala, Guntur, Andhra Pradesh 522415, India

Received 4 January 2014; Accepted 12 February 2014; Published 16 April 2014

Academic Editors: J. Esteve-Romero and A. Tsantili-Kakoulidou

Copyright © 2014 Rihana Parveen Shaik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Morales-Olivas and L. Estañ, “Solifenacin pharmacology,” Archivos Espanoles de Urologia, vol. 63, no. 1, pp. 43–52, 2010. View at Google Scholar · View at Scopus
  2. O. Doroshyenko and U. Fuhr, “Clinical pharmacokinetics and pharmacodynamics of solifenacin,” Clinical Pharmacokinetics, vol. 48, no. 5, pp. 281–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Hoffstetter and C. L. Fah, “Solifenacin succinate for the treatment of overactive bladder,” Expert Opinion on Drug Metabolism and Toxicology, vol. 5, no. 3, pp. 345–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Kuipers, W. J. J. Krauwinkel, H. Mulder, and N. Visser, “Solifenacin demonstrates high absolute bioavailability in healthy men,” Drugs in R and D, vol. 5, no. 2, pp. 73–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. U. L. Roberti Maggiore, S. Salvatore, F. Alessandri et al., “Pharmacokinetics and toxicity of antimuscarinic drugs for overactive bladder treatment in females,” Expert Opinion on Drug Metabolism and Toxicology, vol. 8, no. 11, pp. 1387–1408, 2012. View at Publisher · View at Google Scholar
  6. T. Uchida, W. J. Krauwinkel, H. Mulder, and R. A. Smulders, “Food does not affect the pharmacokinetic of solifenacin, a new muscarinic receptor antagonist: results of a randomized crossover trial,” British Journal of Clinical Pharmacology, vol. 58, no. 1, pp. 4–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Yamada, S. Kuraoka, A. Osano, and Y. Ito, “Characterization of bladder selectivity of antimuscarinic agents on the basis of in vivo drug-receptor binding,” International Neurourology Journal, vol. 16, no. 3, pp. 107–115, 2012. View at Publisher · View at Google Scholar
  8. S. Maruyama, H. Tsukada, S. Nishiyama et al., “In vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy by antimuscarinic agents for overactive bladder treatment,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 774–781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kuipers, R. Smulders, W. Krauwinkel, and T. Hoon, “Open-label study of the safety and pharmacokinetics of solifenacin in subjects with hepatic impairment,” Journal of Pharmacological Sciences, vol. 102, no. 4, pp. 405–412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Callegari, B. Malhotra, P. J. Bungay et al., “A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder,” British Journal of Clinical Pharmacology, vol. 72, no. 2, pp. 235–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Macek, P. Ptacek, and J. Klima, “Determination of solifenacin in human plasma by liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 878, no. 31, pp. 3327–3330, 2010. View at Publisher · View at Google Scholar
  12. H. N. Mistri, A. G. Jangid, A. Pudage, D. M. Rathod, and P. S. Shrivastav, “Highly sensitive and rapid LC-ESI-MS/MS method for the simultaneous quantification of uroselective α1-blocker, alfuzosin and an antimuscarinic agent, solifenacin in human plasma,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 876, no. 2, pp. 236–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Yanagihara, T. Aoki, Y. Soeishi, T. Iwatsubo, and H. Kamimura, “Determination of solifenacin succinate, a novel muscarinic receptor antagonist, and its major metabolite in rat plasma by semi-micro high performance liquid chromatography,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 859, no. 2, pp. 241–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. Krishna, B. M. Rao, and N. S. Rao, “A validated rapid stability-indicating method for the determination of related substances in Solifenacin Succinate by ultra-fast liquid chromatography,” Journal of Chromatographic Science, vol. 48, no. 10, pp. 807–810, 2010. View at Google Scholar · View at Scopus
  15. D. Desai, G. Patel, N. Shukla, and S. Rajput, “Development and validation of stability-indicating HPLC method for solifenacin succinate: isolation and identification of major base degradation product,” Acta Chromatographica, vol. 24, no. 3, pp. 399–418, 2012. View at Publisher · View at Google Scholar
  16. B. V. Rami Reddy, B. Srinivasa Reddy, N. V. V. S. S. Raman, K. S. Reddy, and C. Rambabu, “Development and validation of a specific stability indicating high performance liquid chromatographic methods for related compounds and assay of solifenacin succinate,” Journal of Chemistry, vol. 2013, Article ID 412353, 10 pages, 2013. View at Publisher · View at Google Scholar
  17. D. J. Desai, G. Patel, D. Ruikar, R. A. Jain, and S. J. Rajput, “Development and validation of stability-indicating HPTLC method of solifenacin succinate,” Asian Journal of Pharmaceutical and Biological Research, vol. 1, no. 3, pp. 310–316, 2011. View at Google Scholar
  18. A. M. Deegan, M. Cullen, M. Oelgemöller, K. Nolan, J. Tobin, and A. Morrissey, “A SPE-LC-MS/MS method for the detection of low concentrations of pharmaceuticals in industrial waste streams,” Analytical Letters, vol. 44, no. 17, pp. 2808–2820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. ICH Guidelines, “Validation of analytical procedures: text and methodology,” ICH Q2(R1), 2005. View at Google Scholar