Table of Contents
ISRN Microbiology
Volume 2014, Article ID 135675, 12 pages
http://dx.doi.org/10.1155/2014/135675
Review Article

Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture

Programa de Pós-Graduação em Biologia—Laboratório de Microbiologia e Toxicologia, Centro de Ciências da Saúde, Universidade do Vale do Rio dos Sinos, Avenida Unisinos, 950, 93022-000 São Leopoldo, RS, Brazil

Received 23 September 2013; Accepted 26 November 2013; Published 20 January 2014

Academic Editors: A. Hamood and A. Netrusov

Copyright © 2014 Rogério Schünemann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Rohde and M. Z. Schuster, “Associação entre inseticida biológico (Bacillus thuringiensis) com subdosagens de regulador de crescimento para o controle da Anticarsia gemmatalis (Lepidoptera: Noctuidae) na cultura da soja,” Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, vol. 5, pp. 131–146, 2012. View at Google Scholar
  2. B. Lambert, H. Höfte, K. Annys, S. Jansens, P. Soetaert, and M. Peferoen, “Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2536–2542, 1992. View at Google Scholar · View at Scopus
  3. J. P. Siegel, “The mammalian safety of Bacillus thuringiensis-based insecticides,” Journal of Invertebrate Pathology, vol. 77, no. 1, pp. 13–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. van Frankenhuyzen, “Insecticidal activity of Bacillus thuringiensis crystal proteins,” Journal of Invertebrate Pathology, vol. 101, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Hansen and S. Salamitou, “Virulence of Bacillus thuringiensis,” in Entomopathogenic Bacteria: From Laboratory to Field Application, J. F. Charles, A. Delecluse, and C. Nielsen-Le Roux, Eds., pp. 41–44, Kluwer Academic, Dodrecht, The Netherlands, 2000. View at Google Scholar
  6. S. Gupta and A. K. Dikshit, “Biopesticides: an ecofriendly approach for pest control,” Journal of Biopesticides, vol. 3, no. 1, pp. 186–188, 2010. View at Google Scholar
  7. L. M. Fiuza, “Receptores de Bacillus turingiensis em insetos,” Biotecnologia Ciência e Desenvolvimento, vol. 32, pp. 84–89, 2004. View at Google Scholar
  8. A. M. Shelton, J. Zhao, and R. T. Roush, “Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants,” Annual Review of Entomology, vol. 47, pp. 845–881, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Qaim, “The economics of genetically modified crops,” Annual Review Resoursch Economic, vol. 1, pp. 665–693, 2009. View at Publisher · View at Google Scholar
  10. G. L. M. Martins, L. C. Toscano, G. V. Tomquelski, and W. I. Maruyama, “Inseticidas no controle de Anticarsia gemmatalis (Lepidoptera: Noctuidae) e impacto sobre aranhas predadoras em soja,” Revista Brasileira de Ciências Agrárias, vol. 4, pp. 128–132, 2009. View at Google Scholar
  11. A. L. Lourenção, P. C. Reco, N. R. Braga, G. E. Valle, and J. B. Pinheiro, “Produtividade de genótipos de soja sob infestação da lagarta-da-soja e de percevejos,” Neotropical Entomology, vol. 39, pp. 275–281, 2010. View at Google Scholar
  12. D. Gallo, O. Nakano, S. S. Neto et al., Entomologia Agrícola, FEALQ, Piracicaba, Brazil, 2002.
  13. F. P. F. Reay-Jones, “Spatial and temporal patterns of stink bugs (Hemiptera: Pentatomidae) in wheat,” Environmental Entomology, vol. 39, no. 3, pp. 944–955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. P. Chougule and B. C. Bonning, “Toxins for transgenic resistance to hemipteran pests,” Toxins, vol. 4, no. 6, pp. 405–429, 2012. View at Publisher · View at Google Scholar
  15. L. M. Fiuza, “Bacillus thuringiensis: características e potencial no manejo de insetos,” Acta Biologica Leopoldensia, vol. 23, pp. 141–156, 2001. View at Google Scholar
  16. C. S. Hernández, R. Andrew, Y. Bel, and J. Ferré, “Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia,” Journal of Invertebrate Pathology, vol. 88, no. 1, pp. 8–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. F. Bizzarri and A. H. Bishop, “The ecology of Bacillus thuringiensis on the phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae,” Microbial Ecology, vol. 56, no. 1, pp. 133–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Al-Momani and M. Obeidat, “Ecology, toxicity, and hydrolytic activities of Bacillus thuringiensis in forests,” Turkish Journal of Agriculture and Forestry, vol. 36, pp. 1104–1133, 2012. View at Google Scholar
  19. H. Höfte and H. R. Whiteley, “Insecticidal crystal proteins of Bacillus thuringiensis,” Microbiological Reviews, vol. 53, no. 2, pp. 242–255, 1989. View at Google Scholar · View at Scopus
  20. E. Schnepf, N. Crickmore, J. van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998. View at Google Scholar · View at Scopus
  21. N. Crickmore, D. R. Zeigler, J. Feitelson et al., “Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 807–813, 1998. View at Google Scholar · View at Scopus
  22. M. E. M. Habib and C. F. S. Andrade, “Bactérias entomopatogênicas,” in Controle microbiano de insetos, S. B. Alves, Ed., pp. 383–446, FEALQ, Piracicaba, Brazil, 1998. View at Google Scholar
  23. A. Bravo, S. S. Gill, and M. Soberón, “Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control,” Toxicon, vol. 49, no. 4, pp. 423–435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. G. Monnerat and A. Bravo, “Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: Modo de ação e resistência,” in Controle Biológico, I. S. Melo and J. L. Azevedo, Eds., pp. 163–200, Embrapa-CNPMA, Jaguariúna, Brazil, 2000. View at Google Scholar
  25. N. Crickmore, “Using worms to better understand how Bacillus thuringiensis kills insects,” Trends in Microbiology, vol. 13, no. 8, pp. 347–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Crickmore, Bacillus thuringiensis Nomenclature, 2012, http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/.
  27. M. Porcar and V. Juárez-Pérez, “PCR-based identification of Bacillus thuringiensis pesticidal crystal genes,” FEMS Microbiology Reviews, vol. 26, no. 5, pp. 419–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Tian, J. Yang, and K. Zhang, “Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects,” FEMS Microbiology Ecology, vol. 61, no. 2, pp. 197–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. S. Jouzani, A. Seifinejad, A. Saeedizadeh et al., “Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 812–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. A. Kleter, R. Bhula, K. Bodnaruk et al., “Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective,” Pest Management Science, vol. 63, no. 11, pp. 1107–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. James, “Global status of commercialized Biotech/GM 25 crops: 2011,” ISAAA Brief 43-2011: Status Global das Variedades Transgênicas/Biotecnológicas Comerciais, 2011, http://www.isaaa.org/resources/publications/briefs/43/.
  32. F. B. Silva, J. A. N. Batista, B. M. Marra et al., “Pro domain peptide of HGCP-Iv cysteine proteinase inhibits nematode cysteine proteinases,” Genetics and Molecular Research, vol. 3, no. 3, pp. 342–355, 2004. View at Google Scholar · View at Scopus
  33. S. Mohammedi, S. B. Subramanian, S. Yan, R. D. Tyagi, and J. R. Valéro, “Molecular screening of Bacillus thuringiensis strains from wastewater sludge for biopesticide production,” Process Biochemistry, vol. 41, no. 4, pp. 829–835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Armengol, M. C. Escobar, M. E. Maldonado, and S. Orduz, “Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects,” Journal of Applied Microbiology, vol. 102, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. L. Brandt, T. A. Coudron, J. Habibi et al., “Interaction of two Bacillus thuringiensisδ-endotoxins with the digestive system of Lygus hesperus,” Current Microbiology, vol. 48, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. B. Praça, A. C. Batista, E. S. Martins et al., “Estirpes de Bacillus Thuringiensis efetivas contra insetos das Ordens Lepidoptera, Coleoptera e Diptera,” Pesquisa Agropecuaria Brasileira, vol. 39, pp. 11–16, 2004. View at Google Scholar
  37. A. Franco-Rivera, G. Benintende, J. Cozzi, V. M. Baizabal-Aguirre, J. J. Valdez-Alarcón, and J. E. López-Meza, “Molecular characterization of Bacillus thuringiensis strains from Argentina,” Antonie van Leeuwenhoek, vol. 86, no. 1, pp. 87–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. Berón and G. L. Salerno, “Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control,” BioControl, vol. 51, no. 6, pp. 779–794, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. G. Monnerat, A. C. Batista, P. T. de Medeiros et al., “Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis,” Biological Control, vol. 41, no. 3, pp. 291–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. O. Silva-Werneck and D. J. Ellar, “Characterization of a novel Cry9Bb δ-endotoxin from Bacillus thuringiensis,” Journal of Invertebrate Pathology, vol. 98, no. 3, pp. 320–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Gobatto, S. G. Giani, M. Camassola, A. J. P. Dillon, A. Specht, and N. M. Barros, “Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae),” Brazilian Journal of Biology, vol. 70, no. 4, pp. 1039–1046, 2010. View at Google Scholar · View at Scopus
  42. L. M. Fiuza, R. Schünemann, L. M. N. Pinto, and M. H. B. Zanettini, “Two new Brazilian isolates of Bacillus thuringiensis toxic to Anticarsia gemmatalis (Lepidoptera: Noctuidae ),” Brazilian Journal of Biology, vol. 72, pp. 363–369, 2012. View at Google Scholar
  43. F. S. Walters and L. H. English, “Toxicity of Bacillus thuringiensisδ-endotoxins toward the potato aphid in an artificial diet bioassay,” Entomologia Experimentalis et Applicata, vol. 77, no. 2, pp. 211–216, 1995. View at Google Scholar · View at Scopus
  44. M. Porcar, F. Gómez, A. Gruppe, A. Gómez-Pajuelo, I. Segura, and R. Schröder, “Hymenopteran specificity of Bacillus thuringiensis strain PS86Q3,” Biological Control, vol. 45, no. 3, pp. 427–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Porcar, A. Grenier, B. Federici, and Y. Rahbé, “Effects of Bacillus thuringiensisδ-endotoxins on the pea aphid (Acyrthosiphon pisum),” Applied and Environmental Microbiology, vol. 75, no. 14, pp. 4897–4900, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Li, N. P. Chougule, and B. C. Bonning, “Interaction of the Bacillus thuringiensisδ endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris),” Journal of Invertebrate Pathology, vol. 107, no. 1, pp. 69–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. M. da Cunha, F. H. Caetano, V. Wanderley-Teixeira, J. B. Torres, A. A. C. Teixeira, and L. C. Alves, “Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on bt-cotton,” Micron, vol. 43, no. 2-3, pp. 245–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. W. A. Parrott, J. N. All, M. J. Adang, M. A. Bailey, H. R. Boerma, and C. N. Stewart Jr., “Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene,” In Vitro Cellular & Developmental Biology, vol. 30, no. 3, pp. 144–149, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. D. A. Fischhoff and F. J. Perlak, “Synthetic plant genes,” U.S. Patent # 5: 500, 365, 1995.
  50. C. N. Stewart Jr., M. J. Adang, J. N. All et al., “Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene,” Plant Physiology, vol. 112, no. 1, pp. 121–129, 1996. View at Google Scholar · View at Scopus
  51. D. R. Walker, J. N. All, R. M. McPherson, H. R. Boerma, and W. A. Parrott, “Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noetuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae),” Journal of Economic Entomology, vol. 93, no. 3, pp. 613–622, 2000. View at Google Scholar · View at Scopus
  52. T. C. Macrae, M. E. Baur, D. J. Boethel et al., “Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of lepidoptera,” Journal of Economic Entomology, vol. 98, no. 2, pp. 577–587, 2005. View at Google Scholar · View at Scopus
  53. J. A. Miklos, M. F. Alibhai, S. A. Bledig et al., “Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests,” Crop Science, vol. 47, no. 1, pp. 148–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. S. Homrich, L. M. P. Passaglia, J. F. Pereira et al., “Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae) in transgenic soybean (Glycine max (L.) Merrill Fabales, Fabaceae) cultivar IAS5 expressing a modified Cry1Ac endotoxin,” Genetics and Molecular Biology, vol. 31, no. 2, pp. 522–531, 2008. View at Google Scholar · View at Scopus
  55. R. M. McPherson and T. C. MacRae, “Assessing lepidopteran abundance and crop injury in soybean lines exhibiting a synthetic Bacillus thuringiensis cry1A gene,” Journal of Entomological Science, vol. 44, no. 2, pp. 120–131, 2009. View at Google Scholar · View at Scopus
  56. A. I. Aronson and Y. Shai, “Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action,” FEMS Microbiology Letters, vol. 195, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Yasutake, A. Uemori, K. Kagoshima, and M. Ohba, “Serological identification and insect toxicity of Bacillus thuringiensis isolated from the island Okinoerabu-jima, Japan,” Applied Entomology and Zoology, vol. 42, no. 2, pp. 285–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Ohba, N. Wasano, and E. Mizuki, “Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan,” Microbiological Research, vol. 155, no. 1, pp. 17–22, 2000. View at Google Scholar · View at Scopus
  59. B. E. Tabashnik, A. J. Gassmann, D. W. Crowder, and Y. Carrière, “Insect resistance to Bt crops: evidence versus theory,” Nature Biotechnology, vol. 26, no. 2, pp. 199–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Bravo, S. Likitvivatanavong, S. S. Gill, and M. Soberón, “Bacillus thuringiensis: a story of a successful bioinsecticide,” Insect Biochemistry and Molecular Biology, vol. 41, no. 7, pp. 423–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. B. Torres and J. R. Ruberson, “Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans,” Transgenic Research, vol. 17, no. 3, pp. 345–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Raps, J. Kehr, P. Gugerli, W. J. Moar, F. Bigler, and A. Hilbeck, “Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab,” Molecular Ecology, vol. 10, no. 2, pp. 525–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. B. Torres, J. R. Ruberson, and M. J. Adang, “Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis,” Agricultural and Forest Entomology, vol. 8, no. 3, pp. 191–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. H. A. Bell, R. E. Down, E. C. Fitches, J. P. Edwards, and A. M. R. Gatehouse, “Impact of genetically modified potato expressing plant-derived insect resistance genes on the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae),” Biocontrol Science and Technology, vol. 13, no. 8, pp. 729–741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Romeis, D. Bartsch, F. Bigler et al., “Assessment of risk of insect-resistant transgenic crops to nontarget arthropods,” Nature Biotechnology, vol. 26, no. 2, pp. 203–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. G. L. Lövei, D. A. Andow, and S. Arpaia, “Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies,” Environmental Entomology, vol. 38, no. 2, pp. 293–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. García, F. Ortego, P. Castañera, and G. P. Farinós, “Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria,” Biological Control, vol. 55, no. 3, pp. 225–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. C. Zanuncio, R. N. C. Guedes, H. N. Oliveira, and T. V. Zanuncio, “Uma década de estudos com percevejos predadores: conquistas e desafios,” in Controle biológico no Brasil: Parasitóides e predadores, J. R. P. Parra, P. S. M. Botelho, B. S. Correa-Ferreira, and J. M. S. Bento, Eds., pp. 495–505, Manole, São Paulo, Brazil, 2002. View at Google Scholar
  69. P. T. Cristofoletti, A. F. Ribeiro, C. Deraison, Y. Rahbé, and W. R. Terra, “Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum,” Journal of Insect Physiology, vol. 49, no. 1, pp. 11–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. K. Wright, S. L. Brandt, T. A. Coudron et al., “Characterization of digestive proteolytic activity in Lygus hesperus Knight (Hemiptera: Miridae),” Journal of Insect Physiology, vol. 52, no. 7, pp. 717–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. M. Levy, A. M. F. Falleiros, E. A. Gregório, N. R. Arrebola, and L. A. Toledo, “The larval midgut of Anticarsia gemmatalis (Hübner) (lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells,” Brazilian Journal of Biology, vol. 64, no. 3B, pp. 633–638, 2004. View at Google Scholar · View at Scopus
  72. A. Bravo, K. Hendrickx, S. Jansens, and M. Peferoen, “Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran mudgut membranes,” Journal of Invertebrate Pathology, vol. 60, no. 3, pp. 247–253, 1992. View at Publisher · View at Google Scholar · View at Scopus
  73. V. M. Griego, L. J. Fancher, and K. D. Spence, “Scanning electron microscopy of the disruption of tobacco hornworm, Manduca sexta, midgut by Bacillus thuringiensis endotoxin,” Journal of Invertebrate Pathology, vol. 35, no. 2, pp. 186–189, 1980. View at Google Scholar · View at Scopus
  74. S. Mathavan, P. M. Sudha, and S. M. Pechimuthu, “Effect of Bacillus thuringiensis israelensis on the midgut cells of Bombyx mori larvae: a histopathological and histochemical study,” Journal of Invertebrate Pathology, vol. 53, no. 2, pp. 217–227, 1989. View at Google Scholar · View at Scopus
  75. N. Knaak and L. M. Fiuza, “Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae) treated with nucleopolyhedrovirus and Bacillus thuringiensis serovar kurstaki,” Brazilian Journal of Microbiology, vol. 36, no. 2, pp. 196–200, 2005. View at Google Scholar · View at Scopus
  76. N. Knaak, A. R. Franz, G. F. Santos, and L. M. Fiuza, “Histopathology and the lethal effect of cry proteins and strains of Bacillus thuringiensis berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae),” Brazilian Journal of Biology, vol. 70, no. 3, pp. 677–684, 2010. View at Google Scholar · View at Scopus
  77. N. Knaak, D. L. Berlitz, and L. M. Fiuza, “Toxicology of the bioinsecticides used in agricultural food production,” in Histopathology: Reviews and Recent Advances, E. P. Martinez, Ed., pp. 177–194, InTech Open Access, Rijeka, Croatia, 2012. View at Google Scholar
  78. B. H. Knowles, “Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins,” Advances in Insect Physiology, vol. 24, pp. 275–308, 1994. View at Google Scholar · View at Scopus
  79. B. H. Knowles and J. A. T. Dow, “The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut,” BioEssays, vol. 15, no. 7, pp. 469–476, 1993. View at Google Scholar · View at Scopus
  80. A. Bravo, S. S. Gill, and M. Soberón, “Bacillus thuringiensis mechanisms and use,” in Comprehensive Molecular Insect Science, L. I. Gilbert, I. Kostas, and S. S. Gill, Eds., pp. 175–206, Elsevier, Oxford, UK, 2005. View at Google Scholar
  81. J. Li, J. Carroll, and D. J. Ellar, “Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution,” Nature, vol. 353, no. 6347, pp. 815–821, 1991. View at Publisher · View at Google Scholar · View at Scopus
  82. R. A. de Maagd, A. Bravo, and N. Crickmore, “How Bacillus thuringiensis has evolved specific toxins to colonize the insect world,” Trends in Genetics, vol. 17, no. 4, pp. 193–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. L. J. Gahan, F. Gould, and D. G. Heckel, “Identification of a gene associated with Bt resistance in Heliothis virescens,” Science, vol. 293, no. 5531, pp. 857–860, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. J. L. Jurat-Fuentes and M. J. Adang, “Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae,” European Journal of Biochemistry, vol. 271, no. 15, pp. 3127–3135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Hofmann, H. Vanderbruggen, H. Hofte, J. van Rie, S. Jansens, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 7844–7848, 1988. View at Google Scholar · View at Scopus
  86. J. van Rie, S. Jansens, H. Höfte, D. Degheele, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects,” European Journal of Biochemistry, vol. 186, no. 1-2, pp. 239–247, 1989. View at Publisher · View at Google Scholar · View at Scopus
  87. I. Gómez, L. Pardo-López, C. Muñoz-Garay et al., “Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis,” Peptides, vol. 28, no. 1, pp. 169–173, 2007. View at Google Scholar
  88. X. Zhang, M. Candas, N. B. Griko, R. Taussig, and L. A. Bulla Jr., “A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9897–9902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Oestergaard, R. Ehlers, A. C. Martínez-Ramírez, and M. D. Real, “Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation,” Applied and Environmental Microbiology, vol. 73, no. 11, pp. 3623–3629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. M. E. C. Sousa, F. A. B. Santos, V. Wanderley-Teixeira et al., “Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton,” Journal of Insect Physiology, vol. 56, no. 12, pp. 1913–1919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. C. Zhu, F. R. Zeng, and B. Oppert, “Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 33, no. 9, pp. 889–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. B. A. M. Guedes, J. C. Zanuncio, F. S. Ramalho, and J. E. Serrão, “Midgut morphology and enzymes of the obligate zoophytophagous stinkbug Brontocoris tabidus (Signoret, 1863) (Heteroptera: Pentatomidae),” Pan-Pacific Entomologist, vol. 83, no. 1, pp. 66–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Hegedus, M. Erlandson, C. Gillott, and U. Toprak, “New insights into peritrophic matrix synthesis, architecture, and function,” Annual Review of Entomology, vol. 54, pp. 285–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. P. E. Degrande and L. M. Vivan, “Pragas da soja,” in Boletim de Pesquisa de Soja, J. Caju, M. M. Yuyama, S. Suzuki, and S. A. Camacho, Eds., vol. 12, p. 254, Fundação MT, Rondonópolis, Brazil, 2008. View at Google Scholar
  95. A. Chattopadhyay, N. B. Bhatnagar, and R. Bhatnagar, “Bacterial insecticidal toxins,” Critical Reviews in Microbiology, vol. 30, no. 1, pp. 33–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. E. W. Nester, L. S. Thomashow, M. Metz, and M. Girdon, 100 Years of Bacillus thuringiensis: A Critical Scientific Assesment, ASM, Washington, DC, USA, 2002.
  97. P. Tamez-Guerra, L. J. Galán-Wong, H. Medrado-Roldán et al., “Bioinsecticidas: su empleo, producción y comercialización em México,” Ciência UANL, San Nicolás de Los Garzas, vol. 4, no. 2, pp. 143–152, 2001. View at Google Scholar
  98. M. Chen, J. Zhao, H. L. Collins, E. D. Earle, J. Cão, and A. M. Shelton, “A critical assessment of the effects of Bt transgenic plants on parasitoids,” PLoS ONE, vol. 3, no. 5, Article ID e2284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. J.D. Vendramim and E.C. Guzzo, “Resistência de plantas e a bioecologia e nutrição dos insetos,” in Bioecologia e nutrição de insetos: base para o manejo integrado de pragas, A. R. Panizzi and J. R. P. Parra, Eds., pp. 1055–1105, Embrapa Informação Tecnológica, Brasília, Brazil, 2009. View at Google Scholar
  100. J. O. Siqueira, I. C. B. Trannin, M. A. P. Ramalho, and E. M. G. Fontes, “Interferências no agrossistema e riscos ambientais de culturas transgênicas tolerantes a herbicidas e protegidas contra insetos,” Cadernos de Ciência & Tecnologia, vol. 21, pp. 11–81, 2004. View at Google Scholar
  101. M. Marvier, C. McCreedy, J. Regetz, and P. Kareiva, “A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates,” Science, vol. 316, no. 5830, pp. 1475–1477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. C. James, Global Status of Commercialized Biotech/GM Crops: 2009, ISAAA Brief No. 41, ISAAA, Ithaca, NY, USA, 2009.
  103. A. L. Boiça Jr., A. G. da Silva, D. B. Bottega et al., “Resistência de plantas e o uso de produtos naturais como táticas de controle no manejo integrado de pragas,” in Tópicos em Entomologia Agrícola—IV, A. C. Busoli, D. F. Fraga, L. da Conceição-Santos et al., Eds., pp. 139–158, Gráfica Multipress Ltda, Jaboticabal, Brazil, 2011. View at Google Scholar
  104. P. Christou, D. E. McCabe, and W. F. Swain, “Stable transformation of soybean callus by DNA-coated gold particles,” Plant Physiology, vol. 87, no. 3, pp. 671–674, 1988. View at Publisher · View at Google Scholar
  105. M. A. W. Hinchee, D. V. Connor-Ward, C. A. Newell et al., “Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer,” Biotechnology, vol. 6, no. 8, pp. 915–922, 1988. View at Publisher · View at Google Scholar
  106. N. Crickmore, “Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 616–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. D. G. Heckel, L. J. Gahan, S. W. Baxter et al., “The diversity of Bt resistance genes in species of Lepidoptera,” Journal of Invertebrate Pathology, vol. 95, no. 3, pp. 192–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. J. L. Fox, “Resistance to Bt toxin surprisingly absent from pests,” Nature biotechnology, vol. 21, no. 9, pp. 958–959, 2003. View at Google Scholar · View at Scopus
  109. D. R. G. Price and J. A. Gatehouse, “RNAi-mediated crop protection against insects,” Trends in Biotechnology, vol. 26, no. 7, pp. 393–400, 2008. View at Publisher · View at Google Scholar · View at Scopus