Table of Contents
International Scholarly Research Notices
Volume 2014, Article ID 209683, 6 pages
http://dx.doi.org/10.1155/2014/209683
Research Article

Alterations of Blood Pressure and ECG following Two-Week Consumption of Berberis integerrima Fruit Extract

1Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
2Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran

Received 28 August 2014; Revised 26 September 2014; Accepted 2 October 2014; Published 30 October 2014

Academic Editor: Don Poldermans

Copyright © 2014 Siyavash Joukar and Naser Mahdavi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Shamsa, A. Ahmadiani, and R. Khosrokhavar, “Antihistaminic and anticholinergic activity of barberry fruit (Berberis vulgaris) in the guinea-pig ileum,” Journal of Ethnopharmacology, vol. 64, no. 2, pp. 161–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Arayne, N. Sultana, and S. S. Bahadur, “The berberis story: berberis vulgaris in therapeutics,” Pakistan journal of pharmaceutical sciences, vol. 20, no. 1, pp. 83–92, 2007. View at Google Scholar · View at Scopus
  3. S. B. Ardestani, M. A. Sahari, M. Barzegar, and S. Abbasi, “Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris,” Journal of Food and Pharmaceutical Sciences, vol. 1, pp. 60–67, 2013. View at Google Scholar
  4. M. Fatehi, T. M. Saleh, Z. Fatehi-Hassanabad, K. Farrokhfal, M. Jafarzadeh, and S. Davodi, “A pharmacological study on Berberis vulgaris fruit extract,” Journal of Ethnopharmacology, vol. 102, no. 1, pp. 46–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Shidfar, S. S. Ebrahimi, S. Hosseini, I. Heydari, S. Shidfar, and G. Hajhassani, “The effects of Berberis vulgaris fruit extract on serum Lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients,” Iranian Journal of Pharmaceutical Research, vol. 11, no. 2, pp. 643–652, 2012. View at Google Scholar · View at Scopus
  6. H. Ashraf, R. Heidari, V. Nejati, and M. Ilkhanipoor, “Effects of aqueous extract of Berberis integerrima root on some physiological parameters in streptozotocin-induced diabetic rats,” Iranian Journal of Pharmaceutical Research, vol. 12, no. 2, pp. 425–434, 2013. View at Google Scholar · View at Scopus
  7. M. Imanshahidi and H. Hosseinzadeh, “Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine,” Phytotherapy Research, vol. 22, no. 8, pp. 999–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Ivanovska and S. Philipov, “Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids,” International Journal of Immunopharmacology, vol. 18, no. 10, pp. 553–561, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Küpeli, M. Koşar, E. Yeşilada, K. H. C. Başer, and C. Başer, “A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species,” Life Sciences, vol. 72, no. 6, pp. 645–657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lionte, C. Bologa, and L. Sorodoc, “Toxic and drug-induced changes of the electrocardiogram,” in Advances in Electrocardiograms—Clinical Applications, C. Lionte, C. Bologa, and L. Sorodoc, Eds., chapter 15, 2014, http://cdn.intechopen.com/pdfs-wm/26834.pdf. View at Google Scholar
  11. R. Panikkath, K. Reinier, A. Uy-Evanado et al., “Prolonged tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death,” Circulation: Arrhythmia and Electrophysiology, vol. 4, no. 4, pp. 441–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Joukar, H. Najafipour, S. Dabiri, M. Sheibani, and N. Sharokhi, “Cardioprotective effect of mumie (Shilajit) on experimentally induced myocardial injury,” Cardiovascular Toxicology, vol. 14, no. 3, pp. 214–221, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nada, G. A. Gintant, R. Kleiman et al., “The evaluation and management of drug effects on cardiac conduction (PR and QRS Intervals) in clinical development,” The American Heart Journal, vol. 165, no. 4, pp. 489–500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Joukar, S. Ghorbani-Shahrbabaki, V. Hajali, V. Sheibani, and N. Naghsh, “Susceptibility to life-threatening ventricular arrhythmias in an animal model of paradoxical sleep deprivation,” Sleep Medicine, vol. 14, no. 12, pp. 1277–1282, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kmecova and J. Klimas, “Heart rate correction of the QT duration in rats,” European Journal of Pharmacology, vol. 641, no. 2-3, pp. 187–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. E. Epstein, A. P. Hallstrom, W. J. Rogers et al., “Mortality following ventricular arrhythmia suppression by encainide, flecainide, and moricizine after myocardial infarction: the original design concept of the cardiac arrhythmia suppression trial (CAST),” Journal of the American Medical Association, vol. 270, no. 20, pp. 2451–2455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Pappano and W. G. Wier, Cardiovascular Physiology, Mosby, Philadelphia, Pa, USA, 10th edition, 2013.
  18. R. Žumbakytė-Šermukšnienė, A. Kajėnienė, K. Berškienė, A. Daunoravičienė, and R. Sederevičiūtė-Kandratavičienė, “Assessment of the effect of anthropometric data on the alterations of cardiovascular parameters in lithuanian elite male basketball players during physical load,” Medicina, vol. 48, no. 11, pp. 566–571, 2012. View at Google Scholar · View at Scopus
  19. P. Taggart, P. M. I. Sutton, T. Opthof et al., “Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia,” Cardiovascular Research, vol. 50, no. 3, pp. 454–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Antzelevitch, S. Sicouri, S. H. Litovsky et al., “Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells,” Circulation Research, vol. 69, no. 6, pp. 1427–1449, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. G. X. Yan and C. Antzelevitch, “Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome,” Circulation, vol. 98, no. 18, pp. 1928–1936, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Antzelevitch, W. Shimizu, G.-X. Yan, and S. Sicouri, “Cellular basis for QT dispersion,” Journal of Electrocardiology, vol. 30, pp. 168–175, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Chugh, K. Reinier, T. Singh et al., “Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon sudden unexpected death study,” Circulation, vol. 119, no. 5, pp. 663–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Straus, J. A. Kors, M. L. de Bruin et al., “Prolonged QTc interval and risk of sudden cardiac death in a population of older adults,” Journal of the American College of Cardiology, vol. 47, no. 2, pp. 362–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Antzelevitch, W. Shimizu, and G. X. Yan, “Electrical heterogeneity and the development of arrhythmias,” in Dispersion of Ventricular Repolarization: State of the Art, S. B. Olsson, S. Yuan, and J. P. Amlie, Eds., p. 3, Futura Publishing, Armonk, NY, USA, 2000. View at Google Scholar
  26. S. Sicouri and C. Antzelevitch, “A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell,” Circulation Research, vol. 68, no. 6, pp. 1729–1741, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Antzelevitch, “Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 293, no. 4, pp. H2024–H2038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Gupta, C. Patel, H. Narayanaswamy et al., “T(p-e)/QT ratio as an index of arrhythmogenesis,” Journal of Electrocardiology, vol. 41, no. 6, pp. 567–574, 2008. View at Publisher · View at Google Scholar
  29. N. Watanabe, Y. Kobayashi, K. Tanno et al., “Transmural dispersion of repolarization and ventricular tachyarrhythmias,” Journal of Electrocardiology, vol. 37, no. 3, pp. 191–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Salim, C. L. Case, and P. C. Gillette, “The JT interval as a depolarization independent measurement of repolarization: lessons from catheter ablation of the Wolff-Parkinson-White syndrome,” Pacing and Clinical Electrophysiology, vol. 18, no. 12, pp. 2158–2162, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Chabner and B. Knollman, “Anti-arrhythmic drugs,” in Goodman & Gilman's the Pharmacological Basis of Therapeutics, Section III. Modulation of Cardiovascular Function, chapter 29, McGraw-Hill, New York, NY, USA, 12th edition, 2011. View at Google Scholar
  32. R. R. Shah, “Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives,” British Journal of Pharmacology, vol. 159, no. 1, pp. 58–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Anttonen, M. J. Junttila, H. Rissanen, A. Reunanen, M. Viitasalo, and H. V. Huikuri, “Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population,” Circulation, vol. 116, no. 7, pp. 714–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Funada, K. Hayashi, H. Ino et al., “Assessment of QT intervals and prevalence of short QT syndrome in Japan,” Clinical Cardiology, vol. 31, no. 6, pp. 270–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y.-X. Wang, Y.-H. Tan, and B.-H. Sheng, “Effects of berberine on ventricular fibrillation threshold and action potentials in rabbit myocardium in vivo,” Clinical and Experimental Pharmacology, vol. 14, no. 9, pp. 677–684, 1992. View at Google Scholar
  36. Y.-X. Wang, Y.-H. Tan, and B.-H. Sheng, “Effect of berberine on cardiac arrhythmia following coronary artery occlusion and its mechanism,” Chinese Journal of Pharmacology and Toxicology, vol. 14, no. 9, pp. 677–684, 1992. View at Google Scholar
  37. Y.-X. Wang and Y.-M. Zheng, “Ionic mechanism responsible for prolongation of cardiac action-potential duration by Berberine,” Journal of Cardiovascular Pharmacology, vol. 30, no. 2, pp. 214–222, 1997. View at Publisher · View at Google Scholar · View at Scopus