Table of Contents
International Scholarly Research Notices
Volume 2014, Article ID 234092, 9 pages
Research Article

Reversed Phase SPE and GC-MS Study of Polycyclic Aromatic Hydrocarbons in Water Samples from the River Buriganga, Bangladesh

1Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
2Quality Assurance Department, ACI Ltd., Narayanganj 1400, Bangladesh

Received 20 June 2014; Revised 10 October 2014; Accepted 10 October 2014; Published 29 October 2014

Academic Editor: Maurice Millet

Copyright © 2014 Md. Saddam Nawaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Polycyclic aromatic hydrocarbons (PAHs) are semivolatile organic compounds (SVOCs) categorized as persistent organic pollutants (POPs). PAHs are ubiquitous in terrestrial, atmospheric, and particularly aquatic environments throughout the world and have been detected in lakes, ground waters, and rivers. This research work involved the analysis of five PAHs, anthracene, fluorene, naphthalene, phenanthrene, and pyrene, in water sample collected from the river Buriganga, Bangladesh. The extraction of water samples was carried out by reversed phase solid-phase extraction (RP-SPE) technique with C-18 SPE cartridges. A solvent mixture of dichloromethane and hexane (1 : 2) with a flow rate of 0.5 mL/min was used as eluent. Percentage recoveries of five PAHs for this technique were in the range of 81.47 ± 1.16 to 98.60 ± 0.61%. PAHs quantification was achieved by using an ion trap gas chromatography mass spectrometer (GC-MS) interfaced to gas chromatography (GC) equipped with a fused silica capillary column. Helium was used as carrier gas with a flow rate of 1.0 mL/min. The commonly detected PAH compounds in the river water were anthracene, naphthalene, and phenanthrene at the concentration ranges of 0.451 to 3.201, 0.033 to 3.1131, and 0.320 to 2.546 μg/mL, respectively. The results reflect that PAHs presented in this river water were mostly from petrogenic and pyrogenic sources.