Table of Contents
ISRN Hepatology
Volume 2014, Article ID 236268, 16 pages
http://dx.doi.org/10.1155/2014/236268
Review Article

Hepatic Encephalopathy: From the Pathogenesis to the New Treatments

1Departamento de Hepatología, Hospital Vall d’Hebron, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
2Departamento de Medicina Interna, Universidad Autónoma de Barcelona, Spain
3CIBERehd, Instituto de Salud Carlos III, Madrid, Spain

Received 20 November 2013; Accepted 28 January 2014; Published 4 June 2014

Academic Editors: L.-T. Huang, Y. Shimizu, and M.-H. Zheng

Copyright © 2014 Juan Cordoba. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Adams and J. M. Foley, “The neurological disorder associated with liver disease,” Association for Research in Nervous and Mental, vol. 32, pp. 198–237, 1953. View at Google Scholar · View at Scopus
  2. P. Ferenci, A. Lockwood, K. Mullen, R. Tarter, K. Weissenborn, and A. T. Blei, “Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998,” Hepatology, vol. 35, no. 3, pp. 716–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ortiz, C. Jacas, and J. Córdoba, “Minimal hepatic encephalopathy: diagnosis, clinical significance and recommendations,” Journal of Hepatology, vol. 42, supplement 1, pp. S45–S53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Häussinger and F. Schliess, “Pathogenetic mechanisms of hepatic encephalopathy,” Gut, vol. 57, no. 8, pp. 1156–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Roche Sicot, C. Sicot, and M. Peignoux, “Acute hepatic encephalopathy in the rat: the effect of cross circulation,” Clinical Science and Molecular Medicine, vol. 47, no. 6, pp. 609–615, 1974. View at Google Scholar · View at Scopus
  6. R. F. Butterworth, “Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy,” Neurochemistry International, vol. 57, no. 4, pp. 383–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Fischer and R. J. Baldessarini, “False neurotransmitters and hepatic failure,” The Lancet, vol. 2, no. 7715, pp. 75–80, 1971. View at Google Scholar · View at Scopus
  8. R. F. Butterworth, “Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems,” Current Opinion in Neurology, vol. 13, no. 6, pp. 721–727, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Häussinger, G. Kircheis, R. Fischer, F. Schliess, and S. V. Dahl, “Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema?” Journal of Hepatology, vol. 32, no. 6, pp. 1035–1038, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ahboucha and R. F. Butterworth, “Pathophysiology of hepatic encephalopathy: a new look at GABA from the molecular standpoint,” Metabolic Brain Disease, vol. 19, no. 3-4, pp. 331–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Zieve, W. M. Doizaki, and F. J. Zieve, “Synergism between mercaptans and ammonia or fatty acids in the production of coma: a possible role for mercaptans in the pathogenesis of hepatic coma,” Journal of Laboratory and Clinical Medicine, vol. 83, no. 1, pp. 16–28, 1974. View at Google Scholar · View at Scopus
  12. A. T. Blei, “Infection, inflammation and hepatic encephalopathy, synergism redefined,” Journal of Hepatology, vol. 40, no. 2, pp. 327–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Dam, S. Keiding, O. L. Munk et al., “Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake,” Hepatology, vol. 57, no. 1, pp. 258–265, 2013. View at Google Scholar
  14. A. J. L. Cooper and F. Plum, “Biochemistry and physiology of brain ammonia,” Physiological Reviews, vol. 67, no. 2, pp. 440–519, 1987. View at Google Scholar · View at Scopus
  15. F. Nomura, K. Ohnishi, H. Terabayashi et al., “Effect of intrahepatic portal-systemic shunting on hepatic ammonia extraction in patients with cirrhosis,” Hepatology, vol. 20, no. 6, pp. 1478–1481, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. A. H. Lockwood, E. W. Yap, and W. H. Wong, “Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy,” Journal of Cerebral Blood Flow and Metabolism, vol. 11, no. 2, pp. 337–341, 1991. View at Google Scholar · View at Scopus
  17. S. W. M. Olde Damink, R. Jalan, N. E. P. Deutz et al., “The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis,” Hepatology, vol. 37, no. 6, pp. 1277–1285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. H. Lockwood, J. M. McDonald, and R. E. Reiman, “The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia,” Journal of Clinical Investigation, vol. 63, no. 3, pp. 449–460, 1979. View at Google Scholar · View at Scopus
  19. R. Dietrich, C. Bachmann, and B. H. Lauterburg, “Exercise-induced hyperammonemia in patients with compensated chronic liver disease,” Scandinavian Journal of Gastroenterology, vol. 25, no. 4, pp. 329–334, 1990. View at Google Scholar · View at Scopus
  20. R. Jalan and D. Kapoor, “Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid,” Clinical Science, vol. 106, no. 5, pp. 467–474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Ahl, K. Weissenborn, J. Van Den Hoff et al., “Regional differences in cerebral blood flow and cerebral ammonia metabolism in patients with cirrhosis,” Hepatology, vol. 40, no. 1, pp. 73–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Bhatia, R. Singh, and S. K. Acharya, “Predictive value of arterial ammonia for complications and outcome in acute liver failure,” Gut, vol. 55, no. 1, pp. 98–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. O. Clemmesen, F. S. Larsen, J. Kondrup, B. A. Hansen, and P. Ott, “Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration,” Hepatology, vol. 29, no. 3, pp. 648–653, 1999. View at Google Scholar · View at Scopus
  24. J. Albrecht and M. D. Norenberg, “Glutamine: a Trojan horse in ammonia neurotoxicity,” Hepatology, vol. 44, no. 4, pp. 788–794, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Chavarria, J. Alonso, R. García-Martínez et al., “Brain magnetic resonance spectroscopy in episodic hepatic encephalopathy,” Journal of Cerebral Blood Flow & Metabolism, vol. 33, no. 2, pp. 272–277, 2013. View at Google Scholar
  26. K. D. Mullen and E. A. Jones, “Natural benzodiazepines and hepatic encephalopathy,” Seminars in Liver Disease, vol. 16, no. 3, pp. 255–264, 1996. View at Google Scholar · View at Scopus
  27. A. S. Basile, P. M. Harrison, R. D. Hughes et al., “Relationship between plasma benzodiazepine receptor ligand concentrations and severity of hepatic encephalopathy,” Hepatology, vol. 19, no. 1, pp. 112–121, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Ahboucha, G. P. Layrargues, O. Mamer, and R. F. Butterworth, “Increased brain concentrations of a neuroinhibitory steroid in human hepatic encephalopathy,” Annals of Neurology, vol. 58, no. 1, pp. 169–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Cagnin, S. D. Taylor-Robinson, D. M. Forton, and R. B. Banati, “In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy,” Gut, vol. 55, no. 4, pp. 547–553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Barbaro, G. di Lorenzo, M. Soldini et al., “Flumazenil for hepatic encephalopathy grade III and IVa in patients with cirrhosis: an Italian multicenter double-blind, placebo-controlled, cross- over study,” Hepatology, vol. 28, no. 2, pp. 374–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Yurdaydin, T. J. Walsh, H. D. Engler et al., “Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy,” Brain Research, vol. 679, no. 1, pp. 42–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. B. J. Ruscito and N. L. Harrison, “Hemoglobin metabolites mimic benzodiazepines and are possible mediators of hepatic encephalopathy,” Blood, vol. 102, no. 4, pp. 1525–1528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Krieger, M. Jauss, O. Jansen, L. Theilmann, M. Geissler, and D. Krieger, “Neuropsychiatric profile and hyperintense globus pallidus on T1-weighted magnetic resonance images in liver cirrhosis,” Gastroenterology, vol. 111, no. 1, pp. 147–155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Rose, R. F. Butterworth, J. Zayed et al., “Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction,” Gastroenterology, vol. 117, no. 3, pp. 640–644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. P. J. Thuluvath, D. Edwin, N. C. Yue, C. DeVilliers, S. Hochman, and A. Klein, “Increased signals seen in globus pallidus in T1-weighted magnetic resonance imaging in cirrhotics are not suggestive of chronic hepatic encephalopathy,” Hepatology, vol. 21, no. 2, pp. 440–442, 1995. View at Google Scholar · View at Scopus
  36. M. D. Norenberg, “Astrocytic-ammonia interactions in hepatic encephalopathy,” Seminars in Liver Disease, vol. 16, no. 3, pp. 245–253, 1996. View at Google Scholar · View at Scopus
  37. T. H. Tranah, G. K. Vijay, J. M. Ryan, and D. L. Shawcross, “Systemic inflammation and ammonia in hepatic encephalopathy,” Metabolic Brain Disease, vol. 28, no. 1, pp. 1–5, 2013. View at Publisher · View at Google Scholar
  38. M. Guevara, M. E. Baccaro, A. Torre et al., “Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis,” The American Journal of Gastroenterology, vol. 104, no. 6, pp. 1382–1389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Córdoba, J. Gottstein, and A. T. Blei, “Chronic hyponatremia exacerbates ammonia-induced brain edema in rats after portacaval anastomosis,” Journal of Hepatology, vol. 29, no. 4, pp. 589–594, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Y. Morgan, A. W. Jakobovits, I. M. James, and S. Sherlock, “Successful use of bromocriptine in the treatment of chronic hepatic encephalopathy,” Gastroenterology, vol. 78, no. 4, pp. 663–670, 1980. View at Google Scholar · View at Scopus
  41. A. Michalak, C. Rose, J. Butterworth, and R. F. Butterworth, “Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure,” Hepatology, vol. 24, no. 4 I, pp. 908–913, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Lavoie, J.-F. Giguere, G. P. Layrargues, and R. F. Butterworth, “Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy,” Journal of Neurochemistry, vol. 49, no. 3, pp. 692–697, 1987. View at Google Scholar · View at Scopus
  43. A. H. Lockwood, E. W. H. Yap, H. M. Rhoades, and W. H. Wong, “Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy,” Journal of Cerebral Blood Flow and Metabolism, vol. 11, no. 2, pp. 331–336, 1991. View at Google Scholar · View at Scopus
  44. R. E. O'Carroll, P. C. Hayes, K. P. Ebmeier et al., “Regional cerebral blood flow and cognitive funtion in patients with chronic liver disease,” The Lancet, vol. 337, no. 8752, pp. 1250–1253, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. F. S. Larsen, “Cerebral circulation in liver failure: Ohm's law in force,” Seminars in Liver Disease, vol. 16, no. 3, pp. 281–292, 1996. View at Google Scholar · View at Scopus
  46. J. Cordoba and A. T. Blei, “Brain edema and hepatic encephalopathy,” Seminars in Liver Disease, vol. 16, no. 3, pp. 271–280, 1996. View at Google Scholar · View at Scopus
  47. J. P. Donovan, D. F. Schafer, B. W. Shaw Jr., and M. F. Sorrell, “Cerebral oedema and increased intracranial pressure in chronic liver disease,” The Lancet, vol. 351, no. 9104, pp. 719–721, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Jalan, S. W. M. O. Damink, N. E. P. Deutz, A. Lee, and P. C. Hayes, “Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure,” The Lancet, vol. 354, no. 9185, pp. 1164–1168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Córdoba, “New assessment of hepatic encephalopathy,” Journal of Hepatology, vol. 54, no. 5, pp. 1030–1040, 2011. View at Google Scholar
  50. L. Timmermann, J. Gross, M. Butz, G. Kircheis, D. Häussinger, and A. Schnitzler, “Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling,” Neurology, vol. 61, no. 5, pp. 689–692, 2003. View at Google Scholar · View at Scopus
  51. W. Nolte, J. Wiltfang, C. G. Schindler et al., “Bright basal ganglia in T1-weighted magnetic resonance images are frequent in patients with portal vein thrombosis without liver cirrhosis and not suggestive of hepatic encephalopathy,” Journal of Hepatology, vol. 29, no. 3, pp. 443–449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Lustik, A. K. Chhibber, J. W. Kolano et al., “The hyperventilation of cirrhosis: progesterone and estradiol effects,” Hepatology, vol. 25, no. 1, pp. 55–58, 1997. View at Google Scholar · View at Scopus
  53. E. M. Joebges, M. Heidemann, N. Schimke, H. Hecker, J. C. Ennen, and K. Weissenborn, “Bradykinesia in minimal hepatic encephalopathy is due to disturbances in movement initiation,” Journal of Hepatology, vol. 38, no. 3, pp. 273–280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Mendoza, J. Marti-Fabregas, J. Kulisevsky, and A. Escartin, “Hepatic myelopathy: a rare complication of portacaval shunt,” European Neurology, vol. 34, no. 4, pp. 209–212, 1994. View at Google Scholar · View at Scopus
  55. F. S. Larsen, L. Ranek, B. A. Hansen, and P. Kirkegaard, “Chronic portosystemic hepatic elacephalopathy refractory to medical treatment successfully reversed by liver transplantation,” Transplant International, vol. 8, no. 3, pp. 246–247, 1995. View at Google Scholar · View at Scopus
  56. A. T. Blei and F. S. Larsen, “Pathophysiology of cerebral edema in fulminant hepatic failure,” Journal of Hepatology, vol. 31, no. 4, pp. 771–776, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Munoz, “Difficult management problems in fulminant hepatic failure,” Seminars in Liver Disease, vol. 13, no. 4, pp. 395–413, 1993. View at Google Scholar · View at Scopus
  58. J. C. Quero and S. W. Schalm, “Subclinical hepatic encephalopathy,” Seminars in Liver Disease, vol. 16, no. 3, pp. 321–328, 1996. View at Google Scholar · View at Scopus
  59. J. C. Quero, I. J. C. Hartmann, J. Meulstee, W. C. J. Hop, and S. W. Schalm, “The diagnosis of subclinical hepatic encephalopathy in patients with cirrhosis using neuropsychological tests and automated electroencephalogram analysis,” Hepatology, vol. 24, no. 3, pp. 556–560, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. M. McCrea, J. Cordoba, G. Vessey, A. T. Blei, and C. Randolph, “Neuropsychological characterization and detection of subclinical hepatic encephalopathy,” Archives of Neurology, vol. 53, no. 8, pp. 758–763, 1996. View at Google Scholar · View at Scopus
  61. S. Erceg, P. Monfort, M. Hernández-Viadel, R. Rodrigo, C. Montoliu, and V. Felipo, “Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts,” Hepatology, vol. 41, no. 2, pp. 299–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ortiz, J. Córdoba, C. Jacas, M. Flavià, R. Esteban, and J. Guardia, “Neuropsychological abnormalities in cirrhosis include learning impairment,” Journal of Hepatology, vol. 44, no. 1, pp. 104–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Weissenborn, J. C. Ennen, H. Schomerus, N. Rückert, and H. Hecker, “Neuropsychological characterization of hepatic encephalopathy,” Journal of Hepatology, vol. 34, no. 5, pp. 768–773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Kircheis, M. Wettstein, L. Timmermann, A. Schnitzler, and D. Häussinger, “Critical flicker frequency for quantification of low-grade hepatic encephalopathy,” Hepatology, vol. 35, no. 2, pp. 494–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. F. J. Torlot, M. J. McPhail, and S. D. Taylor-Robinson, “Meta-analysis: the diagnostic accuracy of critical flicker frequency in minimal hepatic encephalopathy,” Alimentary Pharmacology & Therapeutics, vol. 37, no. 5, pp. 527–536, 2013. View at Google Scholar
  66. H. Schomerus, W. Hamster, and H. Blunck, “Latent portasystemic encephalopathy. I. Nature of cerebral functional defects and their effect on fitness to drive,” Digestive Diseases and Sciences, vol. 26, no. 7, pp. 622–630, 1981. View at Google Scholar · View at Scopus
  67. E. Román, J. Córdoba, M. Torrens, C. Guarner, and G. Soriano, “Falls and cognitive dysfunction impair health-related quality of life in patients with cirrhosis,” European Journal of Gastroenterology & Hepatology, vol. 25, no. 1, pp. 77–84, 2013. View at Google Scholar
  68. C. Wein, B. Popp, H. Koch, G. Oehler, and P. Schauder, “Minimal hepatic encephalopathy impairs fitness to drive,” Hepatology, vol. 39, no. 3, pp. 739–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Amodio, F. Del Piccolo, E. Pettenò et al., “Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients,” Journal of Hepatology, vol. 35, no. 1, pp. 37–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Romero-Gómez, L. Grande, and I. Camacho, “Prognostic value of altered oral glutamine challenge in patients with minimal hepatic encephalopathy,” Hepatology, vol. 39, no. 4, pp. 939–943, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. H. O. Conn, “The hepatic encephalopaties,” in Hepatic Encephalopathy. Sindromes and Therapies, H. O. Conn and J. Bircher, Eds., pp. 1–12, Medi-Ed Press, Bloomington, Ill, USA, 1994. View at Google Scholar
  72. M. Ortiz, J. Córdoba, E. Doval et al., “Development of a clinical hepatic encephalopathy staging scale,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 6, pp. 859–867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Kramer, B. Tribl, A. Gendo et al., “Partial pressure of ammonia versus ammonia in hepatic encephalopathy,” Hepatology, vol. 31, no. 1, pp. 30–34, 2000. View at Google Scholar · View at Scopus
  74. F. Nicolao, C. Efrati, A. Masini, M. Merli, A. F. Attili, and O. Riggio, “Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy,” Journal of Hepatology, vol. 38, no. 4, pp. 441–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. M. M. Lauridsen, P. Jepsen, and H. Vilstrup, “Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy. A comparative study of 154 patients with liver disease,” Metabolic Brain Disease, vol. 26, no. 2, pp. 135–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. J. S. Bajaj, “Review article: the modern management of hepatic encephalopathy,” Alimentary Pharmacology & Therapeutics, vol. 31, no. 5, pp. 537–547, 2010. View at Google Scholar
  77. K. Weissenborn, M. Scholz, H. Hinrichs, J. Wiltfang, F. W. Schmidt, and H. Kunkel, “Neurophysiological assessment of early hepatic encephalopathy,” Electroencephalography and Clinical Neurophysiology, vol. 75, no. 4, pp. 289–295, 1990. View at Google Scholar · View at Scopus
  78. F. Kullmann, S. Hollerbach, A. Holstege, and J. Scholmerich, “Subclinical hepatic encephalopathy: the diagnostic value of evoked potentials,” Journal of Hepatology, vol. 22, no. 1, pp. 101–110, 1995. View at Publisher · View at Google Scholar · View at Scopus
  79. J. W. Moore, A. A. Dunk, J. R. Crawford et al., “Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently healthy non-encephalopathic patients with cirrhosis. A controlled study,” Journal of Hepatology, vol. 9, no. 3, pp. 319–325, 1989. View at Google Scholar · View at Scopus
  80. M. L. Zeneroli, G. Cioni, and C. Vezzelli, “Prevalence of brain atrophy in liver cirrhosis patients with chronic persistent encephalopathy. Evaluation by computed tomography,” Journal of Hepatology, vol. 4, no. 3, pp. 283–292, 1987. View at Google Scholar · View at Scopus
  81. S. J. Munoz, M. Robinson, B. Northrup et al., “Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular failure,” Hepatology, vol. 13, no. 2, pp. 209–212, 1991. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Spahr, F. Vingerhoets, F. Lazeyras et al., “Magnetic resonance imaging and proton spectroscopic alterations correlate with parkinsonian signs in patients with cirrhosis,” Gastroenterology, vol. 119, no. 3, pp. 774–781, 2000. View at Google Scholar · View at Scopus
  83. J. Laubenberger, D. Haussinger, S. Bayer, H. Gufler, J. Hennig, and M. Langer, “Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis,” Gastroenterology, vol. 112, no. 5, pp. 1610–1616, 1997. View at Google Scholar · View at Scopus
  84. M. Y. Morgan, “Noninvasive neuroinvestigation in liver disease,” Seminars in Liver Disease, vol. 16, no. 3, pp. 293–314, 1996. View at Google Scholar · View at Scopus
  85. J. Córdoba and B. Mínguez, “Hepatic encephalopathy,” Seminars in Liver Disease, vol. 28, no. 1, pp. 70–80, 2008. View at Google Scholar
  86. D. Horst, N. D. Grace, and H. O. Conn, “Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: a randomized controlled trial,” Hepatology, vol. 4, no. 2, pp. 279–287, 1984. View at Google Scholar · View at Scopus
  87. M. Plauth, M. Merli, J. Kondrup, A. Weimann, P. Ferenci, and M. J. Muller, “ESPEN guidelines for nutrition in liver disease and transplantation,” Clinical Nutrition, vol. 16, no. 2, pp. 43–55, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Córdoba, J. López-Hellín, M. Planas et al., “Normal protein diet for episodic hepatic encephalopathy: results of a randomized study,” Journal of Hepatology, vol. 41, no. 1, pp. 38–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Les, E. Doval, R. García-Martínez et al., “Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study,” The American Journal of Gastroenterology, vol. 106, no. 6, pp. 1081–1088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. L. L. Gluud, G. Dam, M. Borre et al., “Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence?” Metabolic Brain Disease, vol. 28, no. 2, pp. 221–225, 2013. View at Google Scholar
  91. M. Y. Morgan, “Branched chain amino acids in the management of chronic liver disease. Facts and fantasies,” Journal of Hepatology, vol. 11, no. 2, pp. 133–141, 1990. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Marchesini, G. Bianchi, M. Merli et al., “Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial,” Gastroenterology, vol. 124, no. 7, pp. 1792–1801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Bircher and J. Ulrich, “Clinical pharmacology of lactulose, lactitol and related disaccharides,” in Hepatic Encephalopathy. Syndromes and Therapies, H. O. Conn and J. Bircher, Eds., pp. 194–208, Medi-Ed Press, Bloomington, Ill, USA, 1994. View at Google Scholar
  94. C. Florent, B. Flourie, and A. Leblond, “Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study),” Journal of Clinical Investigation, vol. 75, no. 2, pp. 608–613, 1985. View at Google Scholar · View at Scopus
  95. P. B. Mortensen, “The effect of oral-administered lactulose on colonic nitrogen metabolism and excretion,” Hepatology, vol. 16, no. 6, pp. 1350–1356, 1992. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Als-Nielsen, L. L. Gluud, and C. Gluud, “Non-absorbable disaccharides for hepatic encephalopathy: systematic review of randomised trials,” British Medical Journal, vol. 328, no. 7447, pp. 1046–1050, 2004. View at Google Scholar · View at Scopus
  97. M. Romero-Gómez, M. Jover, J. A. del Campo et al., “Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis: a cohort study,” Annals of Internal Medicine, vol. 153, no. 5, pp. 281–288, 2010. View at Google Scholar · View at Scopus
  98. R. Francés, P. Zapater, J. M. González-Navajas et al., “Bacterial DNA in patients with cirrhosis and noninfected ascites mimics the soluble immune response established in patients with spontaneous bacterial peritonitis,” Hepatology, vol. 47, no. 3, pp. 978–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. H. O. Conn, C. M. Leevy, and Z. R. Vlahcevic, “Comparison of lactulose and neomycin in the treatment of chronic portal systemic encephalopathy. A double blind controlled trial,” Gastroenterology, vol. 72, no. 4, pp. 573–583, 1977. View at Google Scholar · View at Scopus
  100. L. Bucci and G. C. Palmieri, “Double-blind, double-dummy comparison between treatment with rifaximin and lactulose in patients with medium to severe degree hepatic encephalopathy,” Current Medical Research and Opinion, vol. 13, no. 2, pp. 109–118, 1993. View at Google Scholar · View at Scopus
  101. C. Loguercio, A. Federico, V. de Girolamo, A. Ferrieri, and C. Del Vecchio Blanco, “Cyclic treatment of chronic hepatic encephalopathy with rifaximin. Results of a double-blind clinical study,” Minerva Gastroenterologica e Dietologica, vol. 49, no. 1, pp. 53–62, 2003. View at Google Scholar · View at Scopus
  102. P. Massa, E. Vallerino, and M. Dodero, “Treatment of hepatic encephalopathy with rifaximin: double blind, double dummy study versus lactulose,” European Journal of Clinical Research, vol. 4, pp. 7–18, 1993. View at Google Scholar · View at Scopus
  103. H. Song, K. S. Lee, M. H. Kim, Y. H. Paik, B. S. Moon, and S. H. Yoon, “The clinical efficacy of rifaximin in the treatment of hepatic encephalopathy (comparison with lactulose) [abstract],” Hepatology, vol. 32, 2000. View at Google Scholar
  104. Y. H. Paik, K. S. Lee, K. H. Han et al., “Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study,” Yonsei Medical Journal, vol. 46, no. 3, pp. 399–407, 2005. View at Google Scholar · View at Scopus
  105. G. - Fera, F. Agostinachio, M. Nigro, O. Schiraldi, and A. Ferrieri, “Rifaximin in the treatment of hepatic encephalopathy,” European Journal of Clinical Research, vol. 4, pp. 57–63, 1993. View at Google Scholar
  106. A. Mas, J. Rodés, L. Sunyer et al., “Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial,” Journal of Hepatology, vol. 38, no. 1, pp. 51–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Di Piazza, M. G. Filippazzo, L. M. Valenza et al., “Rifaximine versus neomycin in the treatment of portosystemic encephalopathy,” Italian Journal of Gastroenterology, vol. 23, no. 7, pp. 403–407, 1991. View at Google Scholar · View at Scopus
  108. D. Festi, G. Mazzella, M. Orsini et al., “Rifaximin in the treatment of chronic hepatic encephalopathy; resultes of a multicenter study of efficacy and safety,” Current Therapeutic Research, vol. 54, no. 5, pp. 598–609, 1993. View at Publisher · View at Google Scholar · View at Scopus
  109. F. Miglio, D. Valpiani, S. R. Rossellini, A. Ferrieri, and N. Canova, “Rifaximin, a non-absorbable rifamycin, for the treatment of hepatic encephalopathy. A double-blind, randomised trial,” Current Medical Research and Opinion, vol. 13, no. 10, pp. 593–601, 1997. View at Google Scholar · View at Scopus
  110. G. Pedretti, C. Calzetti, G. Missale, and F. Fiaccadori, “Rifaximin versus neomycin on hyperammoniemia in chronic portal systemic encephalopathy of cirrhotics. A double-blind, randomized trial,” Italian Journal of Gastroenterology, vol. 23, no. 4, pp. 175–178, 1991. View at Google Scholar · View at Scopus
  111. P. Parini, A. Cipolla, M. Ronchi, A. Salzetta, G. Mazzella, and E. Roda, “Effect of rifaximin and paromomycin in the treatment of portal-systemic encephalopathy,” Current Therapeutic Research, vol. 52, no. 1, pp. 34–39, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. K. M. Eltawil, M. Laryea, K. Peltekian, and M. Molinari, “Rifaximin vs conventional oral therapy for hepatic encephalopathy: a meta-analysis,” World Journal of Gastroenterology, vol. 18, no. 8, pp. 767–777, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. N. M. Bass, K. D. Mullen, A. Sanyal et al., “Rifaximin treatment in hepatic encephalopathy,” The New England Journal of Medicine, vol. 362, no. 12, pp. 1071–1081, 2010. View at Publisher · View at Google Scholar
  114. A. Sanyal, Z. M. Younossi, N. M. Bass et al., “Randomised clinical trial: rifaximin improves health-related quality of life in cirrhotic patients with hepatic encephalopathy-a double-blind placebo-controlled study,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 8, pp. 853–861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. B. M. McGuire, I. A. Zupanets, M. E. Lowe et al., “Pharmacology and safety of glycerol phenylbutyrate in healthy adults and adults with cirrhosis,” Hepatology, vol. 51, no. 6, pp. 2077–2085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. D. C. Rockey, J. M. Vierling, P. Mantry et al., “Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy,” Hepatology, vol. 59, no. 3, pp. 1073–1083, 2013. View at Google Scholar
  117. R. Jalan, G. Wright, N. A. Davies, and S. J. Hodges, “l-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy,” Medical Hypotheses, vol. 69, no. 5, pp. 1064–1069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Ventura-Cots, J. A. Arranz et al., “Safety of ornithine phenylacetate in cirrhotic decompensated patients: an open-label, dose-escalating, single-cohort study,” Journal of Clinical Gastroenterology, p. 6, article 6, 2013. View at Google Scholar
  119. R. Moreau, R. Jalan, P. Gines et al., “Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis,” Gastroenterology, vol. 144, no. 7, pp. 1426–1437, 2013. View at Publisher · View at Google Scholar
  120. R. Banares, F. Nevens, F. S. Larsen et al., “Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial,” Hepatology, vol. 57, no. 3, pp. 1153–1162, 2013. View at Publisher · View at Google Scholar
  121. A. Kribben, G. Gerken, S. Haag et al., “Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure,” Gastroenterology, vol. 142, no. 4, pp. 782–789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Simon-Talero, R. Garcia-Martinez, M. Torrens et al., “Effects of intravenous albumin in patients with cirrhosis and episodic hepatic encephalopathy: a randomized double-blind study,” Journal of Hepatology, vol. 19, no. 13, p. 020, 2013. View at Google Scholar
  123. W. Laleman, M. Simon-Talero, G. Maleux et al., “Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy,” Hepatology, vol. 57, no. 6, pp. 2448–2457, 2013. View at Publisher · View at Google Scholar
  124. R. García Martínez and C. Córdoba Cardona, “Update on the management of hepatic encephalopathy,” Revista Espanola de Enfermedades Digestivas, vol. 100, no. 10, pp. 637–644, 2008. View at Google Scholar
  125. O. Riggio, A. Masini, C. Efrati et al., “Pharmacological prophylaxis of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: a randomized controlled study,” Journal of Hepatology, vol. 42, no. 5, pp. 674–679, 2005. View at Publisher · View at Google Scholar · View at Scopus