Table of Contents
ISRN Nanotechnology
Volume 2014 (2014), Article ID 287575, 13 pages
http://dx.doi.org/10.1155/2014/287575
Research Article

Treatment of Anemia Progression via Magnetite and Folate Nanoparticles In Vivo

1Department of Nutrition Chemistry and Metabolism, National Nutrition Institute (NNI)—Healthy Minster, 16 Kasr El Aini Street, Cairo 11441, Egypt
2Department of Measurements, Photochemistry and Agriculture Applications, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza 11562, Egypt
3Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Cairo 11562, Egypt
4Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 11562, Egypt

Received 21 October 2013; Accepted 9 January 2014; Published 4 March 2014

Academic Editors: Q. Chen, H. Duan, and K. H. Park

Copyright © 2014 Hanaa Hussein Elsayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. House of Lords Science and Technology Committee (HLSTC), Nanotechnologies and Food, The Authority of the House of Lords, The Stationery Office, London, UK, 2010.
  2. H. Chen, J. Weiss, and F. Shahidi, “Nanotechnology in nutraceuticals and functional foods,” Food Technology, vol. 60, no. 3, pp. 30–36, 2006. View at Google Scholar · View at Scopus
  3. J. Weiss, P. Takhistov, and D. J. McClements, “Functional materials in food nanotechnology,” Journal of Food Science, vol. 71, no. 9, pp. R107–R116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Bouwmeester, S. Dekkers, M. Noordam et al., “Health impact of nanotechnologies in food production,” Health risks of application of nanotechnologies and nanoparticles within the food 772.308.01, RIKILT and RIVMH, pp. 9-10, 2007.
  5. G. Miller, R. Senjen, P. Cameron et al., “Nanotechnology and the environment: the nano-atomic reconstruction of nature,” Chain Reaction, vol. 97, pp. 23–26, 2008, http://nano.foe.org.au/node/130. View at Google Scholar
  6. P. G. Brady, “Iron deficiency anemia: a call for aggressive diagnostic evaluation,” Southern Medical Journal, vol. 100, no. 10, pp. 966–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Centers for Disease Control and Prevention (CDC), “Recommendations to prevent and control iron deficiency in the United States (1998),” Morbidity and Mortality Weekly Report, vol. 47, pp. 1–29, 2007. View at Google Scholar
  8. R. Hoffman, E. Benz, S. Shattil et al., “Disorders of iron metabolism: iron deficiency and overload,” in Hematology, chapter 26, Churchill Livingstone, Philadelphia, Pa, USA; Harcourt Brace & Co, New York, NY, USA, 3rd edition, 2000. View at Google Scholar
  9. W. Shang, J. H. Nuffer, V. A. Muñiz-Papandrea, W. Colón, R. W. Siegel, and J. S. Dordick, “Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity,” Small, vol. 5, no. 4, pp. 470–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Hoffart, A. Lamprecht, P. Maincent, T. Lecompte, C. Vigneron, and N. Ubrich, “Oral bioavailability of a low molecular weight heparin using a polymeric delivery system,” Journal of Controlled Release, vol. 113, no. 1, pp. 38–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. J. Hao, G. Q. Jin, X. D. Han, and X. Y. Guo, “Synthesis and characterization of bamboo-like SiC nanofibers,” Materials Letters, vol. 60, no. 11, pp. 1334–1337, 2006. View at Publisher · View at Google Scholar
  13. B. K. Oh, M. E. Robbins, B. J. Nablo, and M. H. Schoenfisch, “Miniaturized glucose biosensor modified with a nitric oxide-releasing xerogel microarray,” Biosensors and Bioelectronics, vol. 21, no. 5, pp. 749–757, 2005. View at Publisher · View at Google Scholar
  14. P. G. Reeves, F. H. Nielsen, and G. C. Fahey Jr., “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993. View at Google Scholar · View at Scopus
  15. D. M. Hegested, R. C. Mills, C. A. Elvehjer, and E. B. Hart, “Choline in chicks,” The Journal of Biological Chemistry, vol. 138, pp. 459–466, 1941. View at Google Scholar
  16. J. A. Campbell, “Methodology of protein evaluation,” PAG. Nutr. Document R. 101 Add. 37, June, Meeting, New York, NY, USA, 1963.
  17. D. Bancroft, A. Stevens, and R. Turner, Theory and Practice of Histological Techniques, Churchill Livingstone, London, UK, 4th edition, 1996.
  18. N. Singha, G. J. S. Jenkins, R. Asadi, and S. H. Doak, “Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION),” Nano Reviews, vol. 1, p. 5358, 2010. View at Google Scholar
  19. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel, “In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis,” Biomaterials, vol. 24, no. 7, pp. 1121–1131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. H. Soenen, J. Baert, and M. De Cuyper, “Optimal conditions for labelling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability,” ChemBioChem, vol. 8, no. 17, pp. 2067–2077, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. American Association for Clinical Chemistry, “The complete blood count (CBC) is often used as a broad screening test to determine an individual's general health status,” 2012.
  22. D. Huang, J. Hsiao, Y. Chen et al., “The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles,” Biomaterials, vol. 30, no. 22, pp. 3645–3651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Sadeghiani, L. S. Barbosa, L. P. Silva, R. B. Azevedo, P. C. Morais, and Z. G. M. Lacava, “Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid,” Journal of Magnetism and Magnetic Materials, vol. 289, pp. 466–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. N. N. Vieira, J. D. Figueroa-Villar, M. N. L. Meirelles, S. T. Ferreira, and F. G. De Felice, “Small molecule inhibitors of lysozyme amyloid aggregation,” Cell Biochemistry and Biophysics, vol. 44, no. 3, pp. 549–553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. U. O. Häfeli, J. S. Riffle, L. Harris-Shekhawat et al., “Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery,” Molecular Pharmaceutics, vol. 6, no. 5, pp. 1417–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Buscombe, G. Paganelli, Z. E. Burak et al., “Sentinel node in breast cancer procedural guidelines,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 12, pp. 2154–2159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Wang, W. Feng, M. Wang et al., “Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice,” Journal of Nanoparticle Research, vol. 10, no. 2, pp. 263–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Pasupuleti, S. Alapati, S. Ganapathy, G. Anumolu, N. R. Pully, and B. M. Prakhya, “Toxicity of zinc oxide nanoparticles through oral route,” Toxicology and Industrial Health, vol. 28, no. 8, pp. 675–686, 2012. View at Google Scholar
  29. M. Esmaeillou, M. Moharamnejad, R. Hsankhani, A. A. Tehrani, and H. Maadi, “Toxicity of ZnO nanoparticles in healthy adult mice,” Environmental Toxicology and Pharmacology, vol. 35, no. 1, pp. 67–71, 2013. View at Google Scholar
  30. D. B. Warheit, T. R. Webb, V. L. Colvin, K. L. Reed, and C. M. Sayes, “Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics,” Toxicological Sciences, vol. 95, no. 1, pp. 270–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Sharma, P. Singh, A. K. Pandey, and A. Dhawan, “Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles,” Mutation Research, vol. 745, no. 1-2, pp. 84–91, 2012. View at Publisher · View at Google Scholar · View at Scopus