Table of Contents
ISRN Biochemistry
Volume 2014 (2014), Article ID 351959, 8 pages
http://dx.doi.org/10.1155/2014/351959
Review Article

Tumor Microenvironment: A New Treatment Target for Cancer

1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
2Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
3Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
4Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
5Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
6Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan

Received 12 January 2014; Accepted 3 March 2014; Published 13 April 2014

Academic Editors: R. Curi, A. Tavares, and Q. Zhang

Copyright © 2014 Ming-Ju Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recent advances in cancer therapy encounter a bottleneck. Relapsing/recurrent disease almost always developed eventually with resistance to the initially effective drugs. Tumor microenvironment has been gradually recognized as a key contributor for cancer progression, epithelial-mesenchymal transition of the cancer cells, angiogenesis, cancer metastasis, and development of drug resistance, while dysregulated immune responses and interactions between various components in the microenvironment all play important roles. Future development of anticancer treatment should take tumor microenvironment into consideration. Besides, we also discuss the limitations of current pre-clinical testing models that mainly come from the impossibility in simulating all detailed carcinogenic mechanisms in human, especially failure to create the same tumor microenvironment. With the cumulating knowledge about tumor microenvironment, the design of a novel anticancer therapy may be facilitated and may have better chance for success in cancer eradication.