Table of Contents
ISRN Analytical Chemistry
Volume 2014, Article ID 372576, 6 pages
http://dx.doi.org/10.1155/2014/372576
Research Article

Characterization of Cr-Curcumin Complex by Differential Pulse Voltammetry and UV-Vis Spectrophotometry

Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA

Received 8 July 2013; Accepted 16 September 2013; Published 4 March 2014

Academic Editors: B. N. Barman, P. Janos, and A. Szemik-Hojniak

Copyright © 2014 Maurice O. Iwunze. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. T. Cefalu and F. B. Hu, “Role of chromium in human health and in diabetes,” Diabetes Care, vol. 27, no. 11, pp. 2741–2751, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Higdon, V. J. Drake, and R. A. Anderson, “Micronutrients: LPI research Newsletter,” 2007, http://www.lpi.oregonstate.edu/infocenter/minerals/chromium.
  3. NIH Office of Dietary Supplements, “Chromium,” http://ods.od.nih.gov/factsheet/Chromium.
  4. J. S. Striffler, J. S. Law, M. M. Polansky, S. J. Bhathena, and R. A. Anderson, “Chromium improves insulin response to glucose in rats,” Metabolism, vol. 44, no. 10, pp. 1314–1320, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Mertz, “Chromium in human nutrition: a review,” Journal of Nutrition, vol. 123, no. 4, pp. 626–633, 1993. View at Google Scholar · View at Scopus
  6. The University of Maryland Medical Center, “Chromium,” http://www.umm.edu/altmed/articles/chromium.
  7. Drugs.com, “Chromium Picolinate,” http://www.drugs.com/mtm/chromium-icolinate.htm.
  8. WebMD, “Find a Vitamin or Supplement,” http://www.webmd.com/vitaminssupplements/incgredientmono-932-CHROMIUM.aspx.
  9. M. H. Pittler and E. Ernst, “Dietary supplements for body-weight reduction: a systematic review,” American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 529–536, 2004. View at Google Scholar · View at Scopus
  10. M. H. Pittler, C. Stevinson, and E. Ernst, “Chromium picolinate for reducing body weight: meta-analysis of randomized trials,” International Journal of Obesity, vol. 27, no. 4, pp. 522–529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. W. Evans and T. D. Bowman, “Chromium picolinate increases membrane fluidity and rate of insulin internalization,” Journal of Inorganic Biochemistry, vol. 46, no. 4, pp. 243–250, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Mozaffari, R. Abdelsayed, J. Y. Liu, H. Wimborne, A. El-Remessy, and A. El-Marakby, “Effects of chromium picolinate on glycemic control and kidney of the obese zucker rat,” Nutrition and Metabolism, vol. 6, article 51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Krishnaswamy and K. Polasa, “Nonnutrients and cancer prevention,” ICMR Bulletin, vol. 31, pp. 1–9, 2001. View at Google Scholar
  14. Alternative Medicine Alert, “Anticancer Potential of Tumeric,” 2003, http://www.thepowerhour.com/curmin/tumeric.
  15. W.-H. Chan and H.-J. Wu, “Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells,” Acta Pharmacologica Sinica, vol. 27, no. 9, pp. 1192–1198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Dai, W.-F. Chen, B. Zhou, L. Yang, and Z.-L. Liu, “Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles,” Phytotherapy Research, vol. 23, no. 9, pp. 1220–1228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Dai, W.-F. Chen, B. Zhou, L. Yang, and Z.-L. Liu, “Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles,” Phytotherapy Research, vol. 25, no. 11, p. 1736, 2011. View at Publisher · View at Google Scholar
  18. O.-S. Baek, O.-H. Kang, Y.-A. Choi et al., “Curcumin inhibits protease-activated receptor-2 and -4-mediated mast cell activation,” Clinica Chimica Acta, vol. 338, no. 1-2, pp. 135–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1, pp. 363–398, 2003. View at Google Scholar · View at Scopus
  20. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, “Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity,” Pharmacology and Toxicology, vol. 92, no. 1, pp. 33–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. W.-H. Chan, C.-C. Wu, and J.-S. Yu, “Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells,” Journal of Cellular Biochemistry, vol. 90, no. 2, pp. 327–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Payton, P. Sandusky, and W. L. Alworth, “NMR study of the solution structure of curcumin,” Journal of Natural Products, vol. 70, no. 2, pp. 143–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-M. Song, J.-P. Xu, L. Ding, Q. Hou, J.-W. Liu, and Z.-L. Zhu, “Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 396–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Stankov, “Curcumin,” in Proceedings of the Chemical and Technical Assessment 61st Joint FAO/WHO Expert Committee on Food Additives, 2004.
  25. H. Kunkely and A. Vogler, “Photooxidation of N,N′-bis(3,5-di-tert.-butylsalicylidene)-1,2-diamino hexane-manganese(III) chloride (Jacobsen catalyst) in chloroform,” Inorganic Chemistry Communications, vol. 4, no. 12, pp. 692–694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. V. Jovanovic, S. Steenken, C. W. Boone, and M. G. Simic, “H-atom transfer is a preferred antioxidant mechanism of curcumin,” Journal of the American Chemical Society, vol. 121, no. 41, pp. 9677–9681, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Zebib, Z. Mouloungui, and V. Noirot, “Stabilization of curcumin by complexation with divalent cations in glycerol/water system,” Bioinorganic Chemistry and Applications, vol. 2010, Article ID 292760, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. H. Tønnesen, M. Másson, and T. Loftsson, “Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability,” International Journal of Pharmaceutics, vol. 244, no. 1-2, pp. 127–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Lingane, “Interpretation of the polarographic waves of complex metal ions,” Chemical Reviews, vol. 29, no. 1, pp. 1–35, 1941. View at Google Scholar · View at Scopus
  30. Y. Kumar, A. Garg, and R. Pandey, “Polarographic reduction of curcumin at dropping mercury electrode,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 314–318, 2012. View at Google Scholar · View at Scopus
  31. G. W. Luther III, T. F. Rozan, A. Witter, and B. Lewis, “Metal-organic complexation in the marine evironment,” Geochemical Transactions, vol. 2, pp. 65–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. W. C. Hoyle and T. M. Thorpe, “Topics in chemical instrumentation: XCVII. Pulse polarography: a series of student experiments,” Journal of Chemical Education, vol. 55, no. 5, pp. A229–A233, 1978. View at Google Scholar · View at Scopus
  33. H. Bilinski, R. Huston, and W. Stumm, “Determination of the stability constants of some hydroxo and carbonato complexes of pb(II), cu(II), cd(II) and zn(II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography,” Analytica Chimica Acta, vol. 84, no. 1, pp. 157–164, 1976. View at Google Scholar · View at Scopus
  34. R. Ernst, H. E. Allen, and K. H. Mancy, “Characterization of trace metal species and measurement by trace metal stability constants by electrochemical techniques,” Water Research, vol. 9, no. 11, pp. 969–979, 1975. View at Publisher · View at Google Scholar · View at Scopus