Table of Contents
ISRN Nephrology
Volume 2014 (2014), Article ID 430247, 16 pages
http://dx.doi.org/10.1155/2014/430247
Research Article

Proteinuria, 99mTc-DTPA Scintigraphy, Creatinine-, Cystatin- and Combined-Based Equations in the Assessment of Chronic Kidney Disease

1Servicios de Nefrología, Hospital Británico de Buenos Aires, Perdriel 74, 1280 Buenos Aires, Argentina
2Laboratorio Central, Hospital Británico de Buenos Aires, Perdriel 74, 1280 Buenos Aires, Argentina
3Servicios de Medicina Nuclear, Hospital Británico de Buenos Aires, Perdriel 74, 1280 Buenos Aires, Argentina
4Servicios de Clínica Médica, Hospital Británico de Buenos Aires, Perdriel 74, 1280 Buenos Aires, Argentina

Received 4 September 2013; Accepted 7 November 2013; Published 11 February 2014

Academic Editors: A. M. Castelao, E. F. Elsayed, and C. Escobar

Copyright © 2014 Hernán Trimarchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Levey, J. Coresh, E. Balk et al., “National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” Annals of Internal Medicine, vol. 139, no. 2, pp. 137–I36, 2003. View at Google Scholar · View at Scopus
  2. A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation to estimate glomerular filtration rate,” Annals of Internal Medicine, vol. 150, no. 9, pp. 604–612, 2009. View at Google Scholar · View at Scopus
  3. M. Froissart, J. Rossert, C. Jacquot, M. Paillard, and P. Houillier, “Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 763–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. D. Poggio, X. Wang, T. Greene, F. Van Lente, and P. M. Hall, “Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 459–466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Levey, R. L. Berg, J. J. Gassman, P. M. Hall, and W. G. Walker, “Creatinine filtration, secretion and excretion during progressive renal disease,” Kidney International, vol. 36, no. 27, pp. S73–S80, 1989. View at Google Scholar · View at Scopus
  6. H. Trimarchi, A. Muryan, D. Martino et al., “Creatinine- vs cystatin C-based equations compared with 99mTcDTPA scyntigraphy to assess glomerular filtration rate in chronic kidney disease,” Journal of Nephrology, vol. 25, pp. 1003–1015, 2012. View at Google Scholar
  7. G. Filler, A. Bökenkamp, W. Hofmann, T. Le Bricon, C. Martínez-Brú, and A. Grubb, “Cystatin C as a marker of GFR—history, indications, and future research,” Clinical Biochemistry, vol. 38, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Randers and E. J. Erlandsen, “Serum cystatin C as an endogenous marker of the renal function—a review,” Clinical Chemistry and Laboratory Medicine, vol. 37, no. 4, pp. 389–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Coll, A. Botey, L. Alvarez et al., “Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment,” American Journal of Kidney Diseases, vol. 36, no. 1, pp. 29–34, 2000. View at Google Scholar · View at Scopus
  10. L. A. Stevens, C. H. Schmid, T. Greene et al., “Factors other than glomerular filtration rate affect serum cystatin C levels,” Kidney International, vol. 75, no. 6, pp. 652–660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Knight, J. C. Verhave, D. Spiegelman et al., “Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement,” Kidney International, vol. 65, no. 4, pp. 1416–1421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. V. R. Dharnidharka, C. Kwon, and G. Stevens, “Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis,” American Journal of Kidney Diseases, vol. 40, no. 2, pp. 221–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Hojs, S. Bevc, B. Antolinc, M. Gorenjak, and L. Puklavec, “Serum cystatin C as an endogenous marker of renal function in the elderly,” International Journal of Clinical Pharmacology Research, vol. 24, no. 2-3, pp. 49–54, 2004. View at Google Scholar · View at Scopus
  14. R. Hojs, S. Bevc, R. Ekart, M. Gorenjak, and L. Puklavec, “Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function,” Nephrology Dialysis Transplantation, vol. 21, no. 7, pp. 1855–1862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. J. Hoek, F. A. W. Kemperman, and R. T. Krediet, “A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate,” Nephrology Dialysis Transplantation, vol. 18, no. 10, pp. 2024–2031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Donadio, A. Lucchesi, M. Ardini, and R. Giordani, “Cystatin C, β2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine,” Journal of Pharmaceutical and Biomedical Analysis, vol. 24, no. 5-6, pp. 835–842, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kyhse-Andersen, C. Schmidt, G. Nordin et al., “Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate,” Clinical Chemistry, vol. 40, no. 10, pp. 1921–1926, 1994. View at Google Scholar · View at Scopus
  18. C. A. Peralta, R. Katz, M. J. Sarnak et al., “Cystatin C identifies chronic kidney disease patients at higher risk for complications,” Journal of the American Society of Nephrology, vol. 22, no. 1, pp. 147–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. O. Eriksen, U. D. Mathisen, T. Melsom et al., “Cystatin C is not a better estimator of GFR than plasma creatinine in the general population,” Kidney International, vol. 78, no. 12, pp. 1305–1311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. G. Shlipak, M. J. Sarnak, R. Katz et al., “Cystatin C and the risk of death and cardiovascular events among elderly persons,” The New England Journal of Medicine, vol. 352, no. 20, pp. 2049–2060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. Stewart, M. R. E. McCredie, S. M. Williams, K. J. Jager, L. Trpeski, and S. P. McDonald, “Trends in incidence of treated end-stage renal disease, overall and by primary renal disease, in persons aged 20–64 years in Europe, Canada and the Asia-Pacific region, 1998–2002,” Nephrology, vol. 12, no. 5, pp. 520–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Wakai, S. Nakai, K. Kikuchi et al., “Trends in incidence of end-stage renal disease in Japan, 1983–2000: age-adjusted and age-specific rates by gender and cause,” Nephrology Dialysis Transplantation, vol. 19, no. 8, pp. 2044–2052, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Najafi, R. Shakeri, F. Islami et al., “Prevalence of chronic kidney disease and its associated risk factors: the first report from Iran using both microalbuminuria and urine sediment,” Archives of Iranian Medicine, vol. 15, no. 2, pp. 70–75, 2012. View at Google Scholar · View at Scopus
  24. D. de Zeeuw, “Albuminuria: a target for treatment of type 2 diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 172–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Lattanzio and M. R. Weir, “Have we fallen off target with concerns surrounding dual RAAS blockade,” Kidney International, vol. 78, no. 6, pp. 539–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Irie, H. Iso, T. Sairenchi et al., “The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population,” Kidney International, vol. 69, no. 7, pp. 1264–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Abbate, C. Zoja, and G. Remuzzi, “How does proteinuria cause progressive renal damage?” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2974–2984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Peterson, S. Adler, J. M. Burkart et al., “Blood pressure control, proteinuria, and the progression of renal disease: the modification of diet in renal disease study,” Annals of Internal Medicine, vol. 123, no. 10, pp. 754–762, 1995. View at Google Scholar · View at Scopus
  29. The GISEN Group, “Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy,” The Lancet, vol. 349, no. 9069, pp. 1857–1863, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. F. H. Wapstra, G. Navis, P. E. De Jong, and D. De Zeeuw, “Prognostic value of the short-term antiproteinuric response to ACE inhibition for prediction of GFR decline in patients with nondiabetic renal disease,” Experimental Nephrology, vol. 4, no. 1, pp. 47–52, 1996. View at Google Scholar · View at Scopus
  31. E. J. Lewis, L. G. Hunsicker, R. P. Bain, and R. D. Rohde, “The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy,” The New England Journal of Medicine, vol. 329, no. 20, pp. 1456–1462, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. D. de Zeeuw, G. Remuzzi, H.-H. Parving et al., “Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL,” Kidney International, vol. 65, no. 6, pp. 2309–2320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. De Zeeuw, G. Remuzzi, H.-H. Parving et al., “Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy,” Circulation, vol. 110, no. 8, pp. 921–927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Trimarchi, “Remnant proteinuria in chronic hemodialysis,” in Hemodialysis, H. Suzuki, Ed., chapter 7, INTECH, Rijeka, Croatia, 2013. View at Google Scholar
  35. E. Durand and A. Prigent, “The basics of renal imaging and function studies,” Quarterly Journal of Nuclear Medicine, vol. 46, no. 4, pp. 249–267, 2002. View at Google Scholar · View at Scopus
  36. H. Trimarchi, A. Muryan, M. Dicugno et al., “Proteinuria: an ignored marker of inflammation and cardiovascular disease in chronic hemodialysis,” International Journal of Nephrology and Renovascular Disease, vol. 5, pp. 1–7, 2012. View at Google Scholar · View at Scopus
  37. L. Meng, Y. Yang, L. T. Qi, X. J. Wang, G. B. Xu, and B. W. Zhang, “Elevated serum cystatin C is an independent predictor of cardiovascular events in people with relatively normal renal function,” Journal of Nephrology, vol. 25, no. 3, pp. 426–430, 2011. View at Publisher · View at Google Scholar
  38. M. M. Galteau, M. Guyon, R. Gueguen, and G. Siest, “Determination of serum cystatin C: biological variation and reference values,” Clinical Chemistry and Laboratory Medicine, vol. 39, no. 9, pp. 850–857, 2001. View at Google Scholar
  39. A. Köttgen, E. Selvin, L. A. Stevens, A. S. Levey, F. Van Lente, and J. Coresh, “Serum cystatin C in the United States: the Third National Health and Nutrition Examination Survey (NHANES III),” American Journal of Kidney Diseases, vol. 51, no. 3, pp. 385–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. A. Peralta, M. G. Shlipak, S. Judd et al., “Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality,” JAMA, vol. 305, no. 15, pp. 1545–1552, 2011. View at Publisher · View at Google Scholar
  41. L. F. Fried, R. Katz, M. J. Sarnak et al., “Kidney function as a predictor of noncardiovascular mortality,” Journal of the American Society of Nephrology, vol. 16, no. 12, pp. 3728–3735, 2005. View at Publisher · View at Google Scholar · View at Scopus