Table of Contents
ISRN Virology
Volume 2014, Article ID 463173, 7 pages
http://dx.doi.org/10.1155/2014/463173
Research Article

Molecular Phylogeny of Suid Herpesvirus 1

1Laboratório de Biologia Molecular, Laboratório Nacional Agropecuário – Lanagro/MG, Ministério da Agricultura, Pecuária e Abastecimento, Avenida Rômulo Joviano s/n, Fazenda Modelo, 33600-000 Pedro Leopoldo, MG, Brazil
2Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil

Received 12 September 2013; Accepted 8 January 2014; Published 10 April 2014

Academic Editors: M. Magnani, S. Pöhlmann, D. Shukla, and A. Vallinoto

Copyright © 2014 Antônio A. Fonseca Jr. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Pomeranz, A. E. Reynolds, and C. J. Hengartner, “Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 462–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Müller, E. C. Hahn, F. Tottewitz et al., “Pseudorabies virus in wild swine: a global perspective,” Archives of Virology, vol. 156, no. 10, pp. 1691–1705, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. S. Christensen, “The population biology of suid herpesvirus 1,” APMIS Supplement, vol. 103, no. 48, pp. 1–48, 1995. View at Google Scholar · View at Scopus
  4. A. A. Fonseca Jr., C. G. Magalhães, E. B. Sales et al., “Genotyping of the pseudorabies virus by multiplex PCR followed by restriction enzyme analysis,” ISRN Microbiology, vol. 2011, Article ID 458294, 4 pages, 2011. View at Publisher · View at Google Scholar
  5. T. L. Goldberg, R. M. Weigel, E. C. Hahn, and G. Scherba, “Comparative utility of restriction fragment length polymorphism analysis and gene sequencing to the molecular epidemiological investigation of a viral outbreak,” Epidemiology and Infection, vol. 126, no. 3, pp. 415–424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Fonseca Jr., M. F. Camargos, A. M. de Oliveira et al., “Molecular epidemiology of Brazilian pseudorabies viral isolates,” Veterinary Microbiology, vol. 141, no. 3-4, pp. 238–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. C. Hahn, B. Fadl-Alla, and C. A. Lichtensteiger, “Variation of Aujeszky's disease viruses in wild swine in USA,” Veterinary Microbiology, vol. 143, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Müller, B. G. Klupp, C. Freuling et al., “Characterization of pseudorabies virus of wild boar origin from Europe,” Epidemiology and Infection, vol. 138, no. 11, pp. 1590–1600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Trybala, T. Bergström, D. Spillmann, B. Svennerholm, S. J. Flynn, and P. Ryan, “Interaction between pseudorabies virus and heparin/heparan sulfate: pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain,” The Journal of Biological Chemistry, vol. 273, no. 9, pp. 5047–5052, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Fonseca Jr., M. L. Sales, M. B. Heinemann, R. C. Leite, and J. K. Reis, “Pseudorabies virus can be classified into five genotypes using partial sequences of ul44,” Brazilian Journal of Microbiology, vol. 43, no. 4, pp. 1632–1640, 2012. View at Publisher · View at Google Scholar
  11. A. Steinrigl, S. Revilla-Fernández, J. Kolodziejek et al., “Detection and molecular characterization of Suid herpesvirus type 1 in Austrian wild boar and hunting dogs,” Veterinary Microbiology, vol. 157, no. 3-4, pp. 276–284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Sozzi, A. Moreno, D. Lelli et al., “Genomic characterization of pseudorabies virus strains isolated in Italy,” Transboundary Emerging Diseases, 2013. View at Publisher · View at Google Scholar
  13. W. A. M. Mulder, L. Jacobs, J. Priem et al., “Glycoprotein gE-negative pseudorabies virus has a reduced capability to infect second- and third-order neurons of the olfactory and trigeminal routes in the porcine central nervous system,” Journal of General Virology, vol. 75, no. 11, pp. 3095–3106, 1994. View at Google Scholar · View at Scopus
  14. A. A. Fonseca Jr., M. B. Heinemann, R. C. Leite, and J. K. P. Reis, “A comparative analysis of envelope and tegument proteins of suid herpesvirus 1, bovine herpesvirus 1 and bovine herpesvirus 5,” Archives of Virology, vol. 155, no. 10, pp. 1687–1692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ishikawa, M. Tsutsui, K. Taguchi, A. Saitoh, and M. Muramatsu, “Sequence variation of the gC gene among pseudorabies virus strains,” Veterinary Microbiology, vol. 49, no. 3-4, pp. 267–272, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Glorieux, H. W. Favoreel, G. Meesen, W. de vos, W. van den Broeck, and H. J. Nauwynck, “Different replication characteristics of historical pseudorabies virus strains in porcine respiratory nasal mucosa explants,” Veterinary Microbiology, vol. 136, no. 3-4, pp. 341–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Serena, G. E. Metz, E. C. Mórtola, and M. G. Echeverría, “Phylogenetic analysis of Suid herpesvirus 1 isolates from Argentina,” Veterinary Microbiology, vol. 154, no. 1-2, pp. 78–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Posada, “Selection of models of DNA evolution with jModelTest,” Methods in Molecular Biology, vol. 537, pp. 93–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Gouy, S. Guindon, and O. Gascuel, “Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building,” Molecular Biology and Evolution, vol. 27, no. 2, pp. 221–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Stern, A. Doron-Faigenboim, E. Erez, E. Martz, E. Bacharach, and T. Pupko, “Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach,” Nucleic Acids Research, vol. 35, pp. W506–W511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Librado and J. Rozas, “DnaSP v5: a software for comprehensive analysis of DNA polymorphism data,” Bioinformatics, vol. 25, no. 11, pp. 1451–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. J. Bandelt, P. Forster, and A. Röhl, “Median-joining networks for inferring intraspecific phylogenies,” Molecular Biology and Evolution, vol. 16, no. 1, pp. 37–48, 1999. View at Google Scholar · View at Scopus
  24. A. A. Fonseca Jr., E. A. Costa, T. S. Oliveira et al., “PCR Multiplex para detecção dos principais herpesvírus neurológicos de ruminantes,” Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 63, pp. 1405–1413, 2011. View at Google Scholar
  25. X. Wang, A. Dai, and X. Li, “Serological survey of infection by swine wild PRV in western Fujian Province,” Journal of Anhui Agricultural University, vol. 4, pp. 450–543, 2008. View at Google Scholar