Table of Contents
ISRN Oncology
Volume 2014, Article ID 530675, 11 pages
http://dx.doi.org/10.1155/2014/530675
Research Article

Mitochondrial DNA Haplogroups and Susceptibility to Prostate Cancer in a Colombian Population

1Human Genetics Laboratory, Science Faculty, Universidad de los Andes, Bogotá, Colombia
2Prostate Clinic, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
3Urology Department, Hospital Militar Central, Bogotá, Colombia
4Pathology and Laboratory Department, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia

Received 24 September 2013; Accepted 28 October 2013; Published 28 January 2014

Academic Editors: P. Parrella and L. Saragoni

Copyright © 2014 D. Cano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Saric, Z. Brkanac, D. A. Troyer et al., “Genetic pattern of prostate cancer progression,” International Journal of Cancer, vol. 81, pp. 219–224, 1999. View at Google Scholar
  2. D. L. Croteau and V. A. Bohr, “Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells,” Journal of Biological Chemistry, vol. 272, no. 41, pp. 25409–25412, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Z. Chen, N. Gokden, G. F. Greene, P. Mukunyadzi, and F. F. Kadlubar, “Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection,” Cancer Research, vol. 62, no. 22, pp. 6470–6474, 2002. View at Google Scholar · View at Scopus
  4. J. Z. Chen, N. Gokden, G. F. Greene, B. Green, and F. F. Kadlubar, “Simultaneous generation of multiple mitochondrial DNA mutations in human prostate tumors suggests mitochondrial hyper-mutagenesis,” Carcinogenesis, vol. 24, no. 9, pp. 1481–1487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. D. Dakubo, R. L. Parr, L. C. Costello, R. B. Franklin, and R. E. Thayer, “Altered metabolism and mitochondrial genome in prostate cancer,” Journal of Clinical Pathology, vol. 59, no. 1, pp. 10–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Petros, A. K. Baumann, E. Ruiz-Pesini et al., “MtDNA mutations increase tumorigenicity in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 719–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Fliss, H. Usadel, O. L. Caballero et al., “Facile detection of mitochondrial DNA mutations in tumors and bodily fluids,” Science, vol. 287, no. 5460, pp. 2017–2019, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. K. K. Singh and M. Kulawiec, “Mitochondrial DNA polymorphism and risk of cancer,” Methods in Molecular Biology, vol. 471, pp. 291–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Achilli, U. A. Perego, C. M. Bravi et al., “The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies,” PLoS ONE, vol. 3, no. 3, Article ID e1764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Bailliet, F. Rothhammer, F. R. Carnese, C. M. Bravi, and N. O. Bianchi, “Founder mitochondrial haplotypes in Amerindian populations,” American Journal of Human Genetics, vol. 55, no. 1, pp. 27–33, 1994. View at Google Scholar · View at Scopus
  11. N. J. R. Fagundes, R. Kanitz, R. Eckert et al., “Mitochondrial population genomics supports a single pre-clovis origin with a coastal route for the peopling of the Americas,” American Journal of Human Genetics, vol. 82, no. 3, pp. 583–592, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Tamm, T. Kivisild, M. Reidla et al., “Beringian standstill and spread of native American founders,” PLoS ONE, vol. 2, no. 9, article e829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. M. Torres, C. M. Bravi, M.-C. Bortolini et al., “A revertant of the major founder Native American haplogroup C common in populations from Northern South America,” American Journal of Human Biology, vol. 18, no. 1, pp. 59–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Alves-Silva, M. Da Silva Santos, P. E. M. Guimaraes et al., “The ancestry of Brazilian mtDNA lineages,” American Journal of Human Genetics, vol. 67, no. 2, pp. 444–461, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Bortolini, W. A. Da Silva Jr., M. A. Zago et al., “The phylogeography of mitochondrial DNA haplogroup L3g in Africa and the atlantic slave trade,” American Journal of Human Genetics, vol. 75, no. 3, pp. 523–524, 2004. View at Google Scholar · View at Scopus
  16. A. Salas, M. Richards, T. De la Fe et al., “The making of the African mtDNA landscape,” American Journal of Human Genetics, vol. 71, no. 5, pp. 1082–1111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Salas, M. Richards, M.-V. Lareu et al., “The African diaspora: mitochondrial DNA and the Atlantic slave trade,” American Journal of Human Genetics, vol. 74, no. 3, pp. 454–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. C. Bortolini, M. A. Zago, F. M. Salzano et al., “Evolutionary and anthropological implications of mitochondrial DNA variation in African Brazilian populations,” Human Biology, vol. 69, no. 2, pp. 141–159, 1997. View at Google Scholar · View at Scopus
  19. S. Rubinstein, M. C. Dulik, O. Gokcumen et al., “Russian old believers: genetic consequences of their persecution and exile, as shown by mitochondrial DNA evidence,” Human Biology, vol. 80, no. 3, pp. 203–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Hedman, A. Brandstätter, V. Pimenoff et al., “Finnish mitochondrial DNA HVS-I and HVS-II population data,” Forensic Science International, vol. 172, no. 2-3, pp. 171–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Xu, Y. Hu, B. Chen et al., “Mitochondrial polymorphisms as risk factors for endometrial cancer in southwest China,” International Journal of Gynecological Cancer, vol. 16, no. 4, pp. 1661–1667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X.-Y. Li, Y.-B. Guo, M. Su, L. Cheng, Z.-H. Lu, and D.-P. Tian, “Association of mitochondrial haplogroup D and risk of esophageal cancer in Taihang Mountain and Chaoshan areas in China,” Mitochondrion, vol. 11, no. 1, pp. 27–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Czarnecka and E. Bartnik, “The role of the mitochondrial genome in aging and carcinogenesis,” Journal of Aging Research, vol. 2011, Article ID 136435, 10 pages, 2011. View at Publisher · View at Google Scholar
  24. A. Salas, Y.-G. Yao, V. Macaulay, A. Vega, Á. Carracedo, and H.-J. Bandelt, “A critical reassessment of the role of mitochondria in tumorigenesis,” PLoS Medicine, vol. 2, no. 11, article e296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Parr, J. Maki, B. Reguly et al., “The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation,” BMC Genomics, vol. 7, article 185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Brandstätter, T. Sänger, S. Lutz-Bonengel et al., “Phantom mutation hotspots in human mitochondrial DNA,” Electrophoresis, vol. 26, no. 18, pp. 3414–3429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-J. Bandelt, L. Quintana-Murci, A. Salas, and V. Macaulay, “The fingerprint of phantom mutations in mitochondrial DNA data,” American Journal of Human Genetics, vol. 71, no. 5, pp. 1150–1160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H.-J. Bandelt, A. Salas, and C. M. Bravi, “What is a “novel” mtDNA mutation—and does “novelty” really matter?” Journal of Human Genetics, vol. 51, no. 12, pp. 1073–1082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Salas, Á. Carracedo, V. Macaulay, M. Richards, and H.-J. Bandelt, “A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics,” Biochemical and Biophysical Research Communications, vol. 335, no. 3, pp. 891–899, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Espey, R. Paisano, and N. Cobb, “Regional patterns and trends in cancer mortality among American Indians and Alaska Natives, 1990–2001,” Cancer, vol. 103, no. 5, pp. 1045–1053, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. L. T. Amundadottir, P. Sulem, J. Gudmundsson et al., “A common variant associated with prostate cancer in European and African populations,” Nature Genetics, vol. 38, no. 6, pp. 652–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. E. Richert-Boe, S. Weinmann, J. A. Shapiro et al., “Racial differences in treatment of early-stage prostate cancer,” Urology, vol. 71, no. 6, pp. 1172–1176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. E. Fowler Jr., S. A. Bigler, G. Bowman, and N. K. Kilambi, “Race and cause specific survival with prostate cancer: influence of clinical stage, Gleason score, age and treatment,” Journal of Urology, vol. 163, no. 1, pp. 137–142, 2000. View at Google Scholar · View at Scopus
  34. L. M. Booker, G. M. Habermacher, B. Jessie et al., “North American white mitochondrial haplogroups in prostate and renal cancer,” Journal of Urology, vol. 175, pp. 468–473, 2006. View at Google Scholar
  35. W. Kim, T.-K. Yoo, D.-J. Shin et al., “Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population,” PLoS ONE, vol. 3, no. 5, Article ID e2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. E. E. Mueller, W. Eder, J. A. Mayr et al., “Mitochondrial haplogroups and control region polymorphisms are not associated with prostate cancer in Middle European caucasians,” PLoS ONE, vol. 4, no. 7, Article ID e6370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Cunningham, S. J. Hebbring, S. K. McDonnell et al., “Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 5, pp. 969–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Allsbrook Jr., K. A. Mangold, X. Yang et al., “The Gleason grading system: an overview,” The Urologic Pathology, vol. 10, pp. 141–157, 1999. View at Google Scholar
  39. A. J. Drummond, B. Ashton, M. Cheung et al., Geneious v4.8, 2009, http://www.geneious.com/.
  40. S. Anderson, A. T. Bankier, and B. G. Barrell, “Sequence and organization of the human mitochondrial genome,” Nature, vol. 290, no. 5806, pp. 457–465, 1981. View at Google Scholar · View at Scopus
  41. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. van Oven and M. Kayser, “Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation,” Human Mutation, vol. 30, no. 2, pp. E386–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Verma, R. K. Naviaux, M. Tanaka, D. Kumar, C. Franceschi, and K. K. Singh, “Meeting report: mitochondrial DNA and cancer epidemiology,” Cancer Research, vol. 67, no. 2, pp. 437–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Darvishi, S. Sharma, A. K. Bhat, E. Rai, and R. N. K. Bamezai, “Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer,” Cancer Letters, vol. 249, no. 2, pp. 249–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. A. Canter, A. R. Kallianpur, and J. H. Fowke, “North American white mitochondrial haplogroups in prostate and renal cancer,” Journal of Urology, vol. 176, no. 5, pp. 2308–2309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. R.-K. Bai, S. M. Leal, D. Covarrubias, A. Liu, and L.-J. C. Wong, “Mitochondrial genetic background modifies breast cancer risk,” Cancer Research, vol. 67, no. 10, pp. 4687–4694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. F. Lee, C. Y. Liu, S. M. Chen et al., “Mitochondrial genome instability and mtDNA depletion in human cancers,” Annals of the New York Academy of Sciences, vol. 1042, pp. 109–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Kulawiec, H. Arnouk, M. M. Desouki, L. Kazim, I. Still, and K. K. Singh, “Proteomic analysis of mitochondria-to-nucleus retrograde response in human cancer,” Cancer Biology and Therapy, vol. 5, no. 8, pp. 967–975, 2006. View at Google Scholar · View at Scopus
  49. L. G. Carvajal-Carmona, I. D. Soto, N. Pineda et al., “Strong Amerind/white sex bias and a possible Sephardic contribution among the founders of a population in Northwest Colombia,” American Journal of Human Genetics, vol. 67, no. 5, pp. 1287–1295, 2000. View at Google Scholar · View at Scopus
  50. C. Rodas, N. Gelvez, and G. Keyeux, “Mitochondrial DNA studies show asymmetrical Amerindian admixture in Afro-Colombian and Mestizo populations,” Human Biology, vol. 75, no. 1, pp. 13–30, 2003. View at Google Scholar · View at Scopus
  51. W. Rojas, M. V. Parra, O. Campo et al., “Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers,” American Journal of Physical Anthropology, vol. 143, no. 1, pp. 13–20, 2010. View at Publisher · View at Google Scholar · View at Scopus