Table of Contents
ISRN Immunology
Volume 2014 (2014), Article ID 541537, 20 pages
http://dx.doi.org/10.1155/2014/541537
Review Article

Coevolution of Mucosal Immunoglobulins and the Polymeric Immunoglobulin Receptor: Evidence That the Commensal Microbiota Provided the Driving Force

Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, 203 Combs Cancer Research Building, 800 Rose Street, Lexington, KY 40536, USA

Received 25 November 2013; Accepted 29 December 2013; Published 4 March 2014

Academic Editors: M. C. Béné and J. L. Stafford

Copyright © 2014 Charlotte S. Kaetzel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, no. 7415, pp. 231–241, 2012. View at Publisher · View at Google Scholar
  2. M. F. Flajnik and M. Kasahara, “Origin and evolution of the adaptive immune system: genetic events and selective pressures,” Nature Reviews Genetics, vol. 11, no. 1, pp. 47–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Flajnik and L. du Pasquier, “Evolution of the immune system,” in Fundamental Immunology, W. E. Paul, Ed., chapter 4, pp. 67–128, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2012. View at Google Scholar
  4. M. Hirano, S. Das, P. Guo, and M. D. Cooper, “The evolution of adaptive immunity in vertebrates,” Advances in Immunology, vol. 109, pp. 125–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Boehm, N. McCurley, Y. Sutoh, M. Schorpp, M. Kasahara, and M. D. Cooper, “VLR-based adaptive immunity,” Annual Review of Immunology, vol. 30, pp. 203–220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Hunkapiller and L. Hood, “Immunology: the growing immunoglobulin gene superfamily,” Nature, vol. 323, no. 6083, pp. 15–16, 1986. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Bork, L. Holm, and C. Sander, “The immunoglobulin fold structural classification, sequence patterns and common core,” Journal of Molecular Biology, vol. 242, no. 4, pp. 309–320, 1994. View at Google Scholar · View at Scopus
  8. C. S. Kaetzel and M. W. Russell, “Phylogeny and comparative physiology of IgA,” in Mucosal Immunology, J. Mestecky, W. Strober, H. Cheroutre, B. Kelsall, B. N. Lambrecht, and M. W. Russell, Eds., chapter 19, Academic Press/Elsevier, Waltham, Mass, USA, 2014. View at Google Scholar
  9. Y. He and P. J. Bjorkman, “Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12431–12436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Woof and D. R. Burton, “Human antibody-Fc receptor interactions illuminated by crystal structures,” Nature Reviews Immunology, vol. 4, no. 2, pp. 89–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. L. Martin, A. P. West Jr., L. Gan, and P. J. Bjorkman, “Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding,” Molecular Cell, vol. 7, no. 4, pp. 867–877, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Ward, “Acquiring maternal immunoglobulin: different receptors, similar functions,” Immunity, vol. 20, no. 5, pp. 507–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. S. Kaetzel, “The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces,” Immunological Reviews, vol. 206, no. 1, pp. 83–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Acharya, G. Borland, A. L. Edkins et al., “CD23/FcεRII: molecular multi-tasking,” Clinical and Experimental Immunology, vol. 162, no. 1, pp. 12–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. B. Klimovich, “IgM and its receptors: structural and functional aspects,” Biochemistry, vol. 76, no. 5, pp. 534–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Woof and M. W. Russell, “Structure and function relationships in IgA,” Mucosal Immunology, vol. 4, no. 6, pp. 590–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F.-E. Johansen and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity,” Mucosal Immunology, vol. 4, no. 6, pp. 598–602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Kokubu, K. Hinds, R. Litman, M. J. Shamblott, and G. W. Litman, “Extensive families of constant region genes in a phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 16, pp. 5868–5872, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Greenberg, A. L. Hughes, J. Guo, D. Avila, E. C. McKinney, and M. F. Flajnik, “A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin,” European Journal of Immunology, vol. 26, no. 5, pp. 1123–1129, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Dooley and M. F. Flajnik, “Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum,” European Journal of Immunology, vol. 35, no. 3, pp. 936–945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. F. Schluter, R. M. Bernstein, and J. J. Marchalonis, “Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates,” Immunology Today, vol. 18, no. 11, pp. 543–549, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Ohta and M. Flajnik, “IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10723–10728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Fillatreau, A. Six, S. Magadan, R. Castro, J. O. Sunyer, and P. Boudinot, “The astonishing diversity of Ig classes and B cell repertoires in teleost fish,” Frontiers in Immunology, vol. 4, no. 28, 2013. View at Publisher · View at Google Scholar
  24. W. Harriman, H. Völk, N. Defranoux, and M. Wabl, “Immunoglobulin class switch recombination,” Annual Review of Immunology, vol. 11, pp. 361–384, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Stavnezer and C. T. Amemiya, “Evolution of isotype switching,” Seminars in Immunology, vol. 16, no. 4, pp. 257–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. V. M. Barreto, Q. Pan-Hammarstrom, Y. Zhao, L. Hammarstrom, Z. Misulovin, and M. C. Nussenzweig, “AID from bony fish catalyzes class switch recombination,” Journal of Experimental Medicine, vol. 202, no. 6, pp. 733–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. C. Fletcher and A. White, “Antibody production in the plaice (Pleuronectes platessa L.) after oral and parenteral immunization with Vibrio anguillarum antigens,” Aquaculture, vol. 1, pp. 417–428, 1972. View at Publisher · View at Google Scholar · View at Scopus
  28. J. W. H. M. Rombout, L. J. Blok, C. H. J. Lamers, and E. Egberts, “Immunization of carp (Cyprinus carpio) with a Vibrio anguillarum bacterin: indications for a common mucosal immune system,” Developmental and Comparative Immunology, vol. 10, no. 3, pp. 341–351, 1986. View at Google Scholar · View at Scopus
  29. U. Georgopoulou and J.-M. Vernier, “Local immunological response in the posterior intestinal segment of the rainbow trout after oral administration of macromolecules,” Developmental and Comparative Immunology, vol. 10, no. 4, pp. 529–537, 1986. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. Lobb, “Secretory immunity induced in catfish, Ictalurus punctatus, following bath immunization,” Developmental and Comparative Immunology, vol. 11, no. 4, pp. 727–738, 1987. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Hansen, E. D. Landis, and R. B. Phillips, “Discovery of a unique Ig heavy-chain (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6919–6924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Danilova, J. Bussmann, K. Jekosch, and L. A. Steiner, “The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z,” Nature Immunology, vol. 6, no. 3, pp. 295–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Savan, A. Aman, K. Sato, R. Yamaguchi, and M. Sakai, “Discovery of a new class of immunoglobulin heavy chain from fugu,” European Journal of Immunology, vol. 35, no. 11, pp. 3320–3331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Savan, A. Aman, M. Nakao, H. Watanuki, and M. Sakai, “Discovery of a novel immunoglobulin heavy chain gene chimera from common carp (Cyprinus carpio L.),” Immunogenetics, vol. 57, no. 6, pp. 458–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Gambón-Deza, C. Sánchez-Espinel, and S. Magadán-Mompó, “Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes,” Developmental and Comparative Immunology, vol. 34, no. 2, pp. 114–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Tadiso, K. K. Lie, and I. Hordvik, “Molecular cloning of IgT from Atlantic salmon, and analysis of the relative expression of τ, μ and δ in different tissues,” Veterinary Immunology and Immunopathology, vol. 139, no. 1, pp. 17–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Mashoof, C. Pohlenz, P. L. Chen et al., “Expressed IgH μ and τ transcripts share diversity segment in ranched Thunnus orientalis,” Developmental and Comparative Immunology, vol. 43, no. 1, pp. 76–86, 2014. View at Publisher · View at Google Scholar
  38. Y.-A. Zhang, I. Salinas, J. Li et al., “IgT, a primitive immunoglobulin class specialized in mucosal immunity,” Nature Immunology, vol. 11, no. 9, pp. 827–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Magadán-Mompó, C. Sánchez-Espinel, and F. Gambón-Deza, “Immunoglobulin heavy chains in medaka (Oryzias latipes),” BMC Evolutionary Biology, vol. 11, no. 1, article 165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. T. Amemiya, J. Alfoldi, A. P. Lee et al., “The African coelacanth genome provides insights into tetrapod evolution,” Nature, vol. 496, no. 7445, pp. 311–316, 2013. View at Publisher · View at Google Scholar
  41. T. Ota, J. P. Rast, G. W. Litman, and C. T. Amemiya, “Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2501–2506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Sun, Z. Wei, N. Li, and Y. Zhao, “A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods,” Developmental and Comparative Immunology, vol. 39, no. 1-2, pp. 103–109, 2013. View at Publisher · View at Google Scholar
  43. I. Hadji-Azimi, “Anuran immunoglobulins: a review,” Developmental and Comparative Immunology, vol. 3, no. 2, pp. 223–243, 1979. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Hsu, M. F. Flajnik, and L. du Pasquier, “A third immunoglobulin class in amphibians,” The Journal of Immunology, vol. 135, no. 3, pp. 1998–2004, 1985. View at Google Scholar · View at Scopus
  45. C. T. Amemiya, R. N. Haire, and G. W. Litman, “Nucleotide sequence of a cDNA encoding a third distinct Xenopus immunoglobulin heavy chain isotype,” Nucleic Acids Research, vol. 17, no. 13, p. 5388, 1989. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Mußmann, M. Wilson, A. Marcuz, M. Courtet, and L. du Pasquier, “Membrane exon sequences of the three Xenopus Ig classes explain the evolutionary origin of mammalian isotypes,” European Journal of Immunology, vol. 26, no. 2, pp. 409–414, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Mußmann, L. du Pasquier, and E. Hsu, “Is Xenopus IgX an analog of IgA?” European Journal of Immunology, vol. 26, no. 12, pp. 2823–2830, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Schaerlinger and J.-P. Frippiat, “IgX antibodies in the urodele amphibian Ambystoma mexicanum,” Developmental and Comparative Immunology, vol. 32, no. 8, pp. 908–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Schaerlinger, M. Bascove, and J.-P. Frippiat, “A new isotype of immunoglobulin heavy chain in the urodele amphibian Pleurodeles waltl predominantly expressed in larvae,” Molecular Immunology, vol. 45, no. 3, pp. 776–786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Mashoof, A. Goodroe, C. C. Du et al., “Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis,” Mucosal Immunology, vol. 6, no. 2, pp. 358–368, 2013. View at Publisher · View at Google Scholar
  51. J. P. Vaerman, J. Picard, and J. F. Heremans, “Structural data on chicken IgA and failure to identify the IgA of the tortoise,” in Immunologic Phylogeny, vol. 64 of Advances in Experimental Medicine and Biology, pp. 185–195, Springer, New York, NY, USA, 1975. View at Publisher · View at Google Scholar
  52. J. L. Portis and J. E. Coe, “IgM the secretory immunoglobulin of reptiles and amphibians,” Nature, vol. 258, no. 5535, pp. 547–548, 1975. View at Publisher · View at Google Scholar · View at Scopus
  53. J. E. Coe, D. Leong, J. L. Portis, and L. A. Thomas, “Immune response in the garter snake (Thamnophis ordinoides),” Immunology, vol. 31, no. 3, pp. 417–424, 1976. View at Google Scholar · View at Scopus
  54. D. Hädge and H. Ambrosius, “Evolution of low molecular weight immunoglobulins—IV. IgY-like immunoglobulins of birds, reptiles and amphibians, precursors of mammalian IgA,” Molecular Immunology, vol. 21, no. 8, pp. 699–707, 1984. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Hädge and H. Ambrosius, “Evolution of low molecular weight immunoglobulins V. Degree of antigenic relationship between the 7S immunoglobulins of mammals, birds, and lower vertebrates to the turkey IgY,” Developmental and Comparative Immunology, vol. 10, no. 3, pp. 377–385, 1986. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Magadan-Mompo, C. Sanchez-Espinel, and F. Gambon-Deza, “Immunoglobulin genes of the turtles,” Immunogenetics, vol. 65, no. 3, pp. 227–237, 2013. View at Publisher · View at Google Scholar
  57. Z. Wei, Q. Wu, L. Ren et al., “Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis,” The Journal of Immunology, vol. 183, no. 6, pp. 3858–3864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Gambón-Deza, C. Sánchez-Espinel, and J. V. Beneitez, “A novel IgA-like immunoglobulin in the reptile Eublepharis macularius,” Developmental and Comparative Immunology, vol. 31, no. 6, pp. 596–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Cheng, Y. Gao, T. Wang et al., “Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians,” Nature Communications, vol. 4, article 1337, 2013. View at Publisher · View at Google Scholar
  60. S. Magadan-Mompo, C. Sanchez-Espinel, and F. Gambon-Deza, “IgH loci of American alligator and saltwater crocodile shed light on IgA evolution,” Immunogenetics, vol. 65, no. 7, pp. 531–541, 2013. View at Publisher · View at Google Scholar
  61. E. Orlans and M. E. Rose, “An IgA-like immunoglobulin in the fowl,” Immunochemistry, vol. 9, no. 8, pp. 833–838, 1972. View at Publisher · View at Google Scholar · View at Scopus
  62. G. A. Leslie and L. N. Martin, “Studies on the secretory immunologic system of fowl. 3. Serum and secretory IgA of the chicken,” The Journal of Immunology, vol. 110, no. 1, pp. 1–9, 1973. View at Google Scholar · View at Scopus
  63. J. Bienenstock, D. Y. Perey, J. Gauldie, and B. J. Underdown, “Chicken γA: physicochemical and immunochemical characteristics,” The Journal of Immunology, vol. 110, no. 2, pp. 524–533, 1973. View at Google Scholar · View at Scopus
  64. A. M. Lebacq-Verheyden, J. P. Vaerman, and J. F. Heremans, “Quantification and distribution of chicken immunoglobulins IgA, IgM and IgG in serum and secretions,” Immunology, vol. 27, no. 4, pp. 683–692, 1974. View at Google Scholar · View at Scopus
  65. J. Goudswaard, A. Noordzij, R. H. van Dam, J. A. vander Donk, and J. P. Vaerman, “The immunoglobulins of the turkey (Meleagris gallopavo). Isolation and characterization of IgG, IgM and IgA in body fluids, eggs and intraocular tissues,” Poultry science, vol. 56, no. 6, pp. 1847–1851, 1977. View at Google Scholar · View at Scopus
  66. D. Hadge and H. Ambrosius, “Comparative studies on the structure of biliary immunoglobulins of some avian species. II. Antigenic properties of the biliary immunoglobulins of chicken, turkey, duck and goose,” Developmental and Comparative Immunology, vol. 12, no. 2, pp. 319–329, 1988. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Goudswaard, J. P. Vaerman, and J. F. Heremans, “Three immunoglobulin classes in the pigeon (Columbia livia),” International Archives of Allergy and Applied Immunology, vol. 53, no. 5, pp. 409–419, 1977. View at Publisher · View at Google Scholar · View at Scopus
  68. P. L. K. Ng and D. A. Higgins, “Bile immunoglobulin of the duck (Anas platyrhynchos). I. Preliminary characterization and ontogeny,” Immunology, vol. 58, no. 2, pp. 323–327, 1986. View at Google Scholar · View at Scopus
  69. K. E. Magor, G. W. Warr, Y. Bando, D. L. Middleton, and D. A. Higgins, “Secretory immune system of the duck (Anas platyrhynchos). Identification and expression of the genes encoding IgA and IgM heavy chains,” European Journal of Immunology, vol. 28, no. 3, pp. 1063–1068, 1998. View at Google Scholar
  70. Y. Zhao, H. Rabbani, A. Shimizu, and L. Hammarström, “Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted α gene upstream of a condensed υ gene,” Immunology, vol. 101, no. 3, pp. 348–353, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. M. L. Lundqvist, D. L. Middleton, S. Hazard, and G. W. Warr, “The immunoglobulin heavy chain locus of the duck: genomic organization and expression of D, J, and C region genes,” The Journal of Biological Chemistry, vol. 276, no. 50, pp. 46729–46736, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Huang, M. Zhang, Z. Wei et al., “Analysis of immunoglobulin transcripts in the ostrich Struthio camelus, a primitive avian species,” PLoS ONE, vol. 7, no. 3, Article ID e34346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. K. H. Roux, “Immunoglobulin structure and function as revealed by electron microscopy,” International Archives of Allergy and Immunology, vol. 120, no. 2, pp. 85–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Gambón-Deza, C. Sánchez-Espinel, and S. Magadán-Mompó, “The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus),” Molecular Immunology, vol. 46, no. 13, pp. 2515–2523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Zhao, H. Cui, C. M. Whittington et al., “Ornithorhynchus anatinus (platypus) links the evolution of immunoglobulin genes in eutherian mammals and nonmammalian tetrapods,” The Journal of Immunology, vol. 183, no. 5, pp. 3285–3293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Aveskogh and L. Hellman, “Evidence for an early appearance of modern post-switch isotypes in mammalian evolution, cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica,” European Journal of Immunology, vol. 28, no. 9, pp. 2738–2750, 1998. View at Google Scholar
  77. K. Belov, G. A. Harrison, and D. W. Cooper, “Molecular cloning of the cDNA encoding the constant region of the immunoglobulin a heavy chain (Cα) from a marsupial: Trichosurus vulpecula (common brushtail possum),” Immunology Letters, vol. 60, no. 2-3, pp. 165–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Belov, K. R. Zenger, L. Hellman, and D. W. Cooper, “Echidna IgA supports mammalian unity and traditional Therian relationship,” Mammalian Genome, vol. 13, no. 11, pp. 656–663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Belov and L. Hellman, “Immunoglobulin genetics of Ornithorhynchus anatinus (platypus) and Tachyglossus aculeatus (short-beaked echidna),” Comparative Biochemistry and Physiology, vol. 136, no. 4, pp. 811–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Vernersson, M. Aveskogh, B. Munday, and L. Hellman, “Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (II), cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus,” European Journal of Immunology, vol. 32, no. 8, pp. 2145–2155, 2002. View at Google Scholar
  81. C. Auffray, R. Nageotte, and J. L. Sikorav, “Mouse immunoglobulin A: nucleotide sequence of the structural gene for the α heavy chain derived from cloned cDNAs,” Gene, vol. 13, no. 4, pp. 365–374, 1981. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Ukaji, D. Sumiyama, and O. Kai, “Sequence determination of the heavy-chain constant region in four immunoglobulin classes of Mongolian gerbils (Meriones unguiculatus),” Experimental Animals, vol. 61, no. 2, pp. 99–107, 2012. View at Publisher · View at Google Scholar
  83. R. C. Burnett, W. C. Hanly, S. K. Zhai, and K. L. Knight, “The IgA heavy chain gene family in rabbit: cloning and sequence analysis of 13 Cα genes,” The EMBO Journal, vol. 8, no. 13, pp. 4041–4047, 1989. View at Google Scholar · View at Scopus
  84. D. K. Lanning, S.-K. Zhai, and K. L. Knight, “Analysis of the 3′ Cμ region of the rabbit Ig heavy chain locus,” Gene, vol. 309, no. 2, pp. 135–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Ros, J. Puels, N. Reichenberger, W. van Schooten, R. Buelow, and J. Platzer, “Sequence analysis of 0.5 Mb of the rabbit germline immunoglobulin heavy chain locus,” Gene, vol. 330, no. 1-2, pp. 49–59, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Patel, D. Selinger, G. E. Mark, G. J. Hickey, and G. F. Hollis, “Sequence of the dog immunoglobulin alpha and epsilon constant region genes,” Immunogenetics, vol. 41, no. 5, pp. 282–286, 1995. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Zhao, Y. Zhao, Q. Pan-Hammarström et al., “Physical mapping of the giant panda immunoglobulin heavy chain constant region genes,” Developmental and Comparative Immunology, vol. 31, no. 10, pp. 1034–1049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. W. R. Brown and J. E. Butler, “Characterization of a Cα gene of swine,” Molecular Immunology, vol. 31, no. 8, pp. 633–642, 1994. View at Publisher · View at Google Scholar · View at Scopus
  89. W. R. Brown, H. Rabbani, J. E. Butler, and L. Hammarström, “Characterization of the bovine Cα gene,” Immunology, vol. 91, no. 1, pp. 1–6, 1997. View at Google Scholar · View at Scopus
  90. G. P. White, P. Roche, M. R. Brandon, S. E. Newton, and E. N. T. Meeusen, “Cloning and characterization of sheep (Ovis aries) immunoglobulin α chain,” Immunogenetics, vol. 48, no. 5, pp. 359–362, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Mancia, T. A. Romano, H. A. Gefroh et al., “Characterization of the immunoglobulin A heavy chain gene of the Atlantic bottlenose dolphin (Tursiops truncatus),” Veterinary Immunology and Immunopathology, vol. 118, no. 3-4, pp. 304–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Wagner, I. Greiser-Wilke, and D. F. Antczak, “Characterization of the horse [Equus caballus] IGHA gene,” Immunogenetics, vol. 55, no. 8, pp. 552–560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Takahashi, S. Ueda, and M. Obata, “Structure of human immunoglobulin gamma genes: implications for evolution of a gene family,” Cell, vol. 29, no. 2, pp. 671–679, 1982. View at Publisher · View at Google Scholar · View at Scopus
  94. J. G. Flanagan, M.-P. Lefranc, and T. H. Rabbitts, “Mechanisms of divergence and convergence of the human immunoglobulin α1 and α2 constant region gene sequences,” Cell, vol. 36, no. 3, pp. 681–688, 1984. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Kawamura, K. Omoto, and S. Ueda, “Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene,” Journal of Molecular Biology, vol. 215, no. 2, pp. 201–206, 1990. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Scinicariello, F. Masseoud, L. Jayashankar, and R. Attanasio, “Sooty mangabey (Cercocebus torquatus atys) IGHG and IGHA genes,” Immunogenetics, vol. 58, no. 12, pp. 955–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Rogers, L. Jayashankar, F. Scinicariello, and R. Attanasio, “Nonhuman primate IgA: genetic heterogeneity and interactions with CD89,” The Journal of Immunology, vol. 180, no. 7, pp. 4816–4824, 2008. View at Google Scholar · View at Scopus
  98. S. Kawamura, N. Saitou, and S. Ueda, “Concerted evolution of the primate immunoglobulin α-gene through gene conversion,” The Journal of Biological Chemistry, vol. 267, no. 11, pp. 7359–7367, 1992. View at Google Scholar · View at Scopus
  99. S. Kawamura and S. Ueda, “Immunoglobulin CH gene family in hominoids and its evolutionary history,” Genomics, vol. 13, no. 1, pp. 194–200, 1992. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Brusco, U. Cariota, A. Bottaro et al., “Structural and immunologic analysis of gene triplications in the Ig heavy chain constant region locus,” The Journal of Immunology, vol. 152, no. 1, pp. 129–135, 1994. View at Google Scholar · View at Scopus
  101. H. Rabbani, Q. Pan, N. Kondo, C. I. E. Smith, and L. Hammarström, “Duplications and deletions of the human IGHC locus: evolutionary implications,” Immunogenetics, vol. 45, no. 2, pp. 136–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. P. F. Weinheimer, J. Mestecky, and R. T. Acton, “Species distribution of J chain,” The Journal of Immunology, vol. 107, no. 4, pp. 1211–1212, 1971. View at Google Scholar · View at Scopus
  103. F. P. Inman and J. Mestecky, “The J chain of polymeric immunoglobulins,” in Contemporary Topics in Molecular Immunology, vol. 3, pp. 111–141, Springer, New York, NY, USA, 1974. View at Publisher · View at Google Scholar
  104. P. Brandtzaeg, “Presence of J chain in human immunocytes containing various immunoglobulin classes,” Nature, vol. 252, no. 5482, pp. 418–420, 1974. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Tacchi, E. Larragoite, and I. Salinas, “Discovery of J chain in African lungfish (Protopterus dolloi, Sarcopterygii) using high throughput transcriptome sequencing: implications in mucosal immunity,” PLoS ONE, vol. 8, no. 8, Article ID e70650, 2013. View at Publisher · View at Google Scholar
  106. I. K. Zarkadis, D. Mastellos, and J. D. Lambris, “Phylogenetic aspects of the complement system,” Developmental and Comparative Immunology, vol. 25, no. 8-9, pp. 745–762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. A. P. West Jr., A. B. Herr, and P. J. Bjorkman, “The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog,” Immunity, vol. 20, no. 5, pp. 601–610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. D. B. Tesar, E. J. Cheung, and P. J. Bjorkman, “The chicken yolk sac IgY receptor, a mammalian mannose receptor family member, transcytoses IgY across polarized epithelial cells,” Molecular Biology of the Cell, vol. 19, no. 4, pp. 1587–1593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. A. I. Taylor, R. L. Beavil, B. J. Sutton, and R. A. Calvert, “A monomeric chicken IgY receptor binds IgY with 2:1 stoichiometry,” The Journal of Biological Chemistry, vol. 284, no. 36, pp. 24168–24175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Baker, S.-W. Qiao, T. Kuo et al., “Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn,” Seminars in Immunopathology, vol. 31, no. 2, pp. 223–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Baker, R. S. Blumberg, and C. S. Kaetzel, “Immunoglobulin transport and immunoglobulin receptors,” in Mucosal Immunology, J. Mestecky, W. Strober, H. Cheroutre, B. Kelsall, B. N. Lambrecht, and M. W. Russell, Eds., chapter 20, Academic Press/Elsevier, Waltham, Mass, USA, 2014. View at Google Scholar
  112. C. S. Kaetzel, “The polymeric immunoglobulin receptor,” in eLS, John Wiley & Sons, Chichester, UK, 2013. View at Publisher · View at Google Scholar
  113. N. J. Mantis, N. Rol, and B. Corthésy, “Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut,” Mucosal Immunology, vol. 4, no. 6, pp. 603–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. J. V. Peppard, M. E. Rose, and P. Hesketh, “A functional homologue of mammalian secretory component exists in chickens,” European Journal of Immunology, vol. 13, no. 7, pp. 566–570, 1983. View at Publisher · View at Google Scholar · View at Scopus
  115. K. E. Mostov, M. Friedlander, and G. Blobel, “The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains,” Nature, vol. 308, no. 5954, pp. 37–43, 1984. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Krajci, R. Solberg, M. Sandberg, O. Oyen, T. Jahnsen, and P. Brandtzaeg, “Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues,” Biochemical and Biophysical Research Communications, vol. 158, no. 3, pp. 783–789, 1989. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Krajci, D. Kvale, K. Tasken, and P. Brandtzaeg, “Molecular cloning and exon-intron mapping of the gene encoding human transmembrane secretory component (the poly-Ig receptor),” European Journal of Immunology, vol. 22, no. 9, pp. 2309–2315, 1992. View at Publisher · View at Google Scholar · View at Scopus
  118. J. F. Piskurich, J. A. France, C. M. Tamer, C. A. Willmer, C. S. Kaetzel, and D. M. Kaetzel, “Interferon-γ induces polymeric immunoglobulin receptor mRNA in human intestinal epithelial cells by a protein synthesis dependent mechanism,” Molecular Immunology, vol. 30, no. 4, pp. 413–421, 1993. View at Publisher · View at Google Scholar · View at Scopus
  119. J. F. Piskurich, M. H. Blanchard, K. R. Youngman, J. A. France, and C. S. Kaetzel, “Molecular cloning of the mouse polymeric Ig receptor: functional regions of the molecule are conserved among five mammalian species,” The Journal of Immunology, vol. 154, no. 4, pp. 1735–1747, 1995. View at Google Scholar · View at Scopus
  120. M. A. Kulseth, P. Krajci, O. Myklebost, and S. Rogne, “Cloning and characterization of two forms of bovine polymeric immunoglobulin receptor cDNA,” DNA and Cell Biology, vol. 14, no. 3, pp. 251–256, 1995. View at Publisher · View at Google Scholar · View at Scopus
  121. K. S. Koch, A. S. Gleiberman, T. Aoki et al., “Discordant expression and variable numbers of neighboring GGA- and GAA-rich triplet repeats in the 3′ untranslated regions of two groups of messenger RNAs encoded by the rat polymeric immunoglobulin receptor gene,” Nucleic Acids Research, vol. 23, no. 7, pp. 1098–1112, 1995. View at Publisher · View at Google Scholar · View at Scopus
  122. F. M. Adamski and J. Demmer, “Two stages of increased IgA transfer during lactation in the marsupial, Trichosurus vulpecula (brushtail possum),” The Journal of Immunology, vol. 162, no. 10, pp. 6009–6015, 1999. View at Google Scholar · View at Scopus
  123. H. Kumura, T. Sone, K.-I. Shimazaki, and E. Kobayashi, “Sequence analysis of porcine polymeric immunoglobulin receptor from mammary epithelial cells present in colostrum,” The Journal of Dairy Research, vol. 67, no. 4, pp. 631–636, 2000. View at Google Scholar · View at Scopus
  124. C. L. Taylor, G. A. Harrison, C. M. Watson, and E. M. Deane, “cDNA cloning of the polymeric immunoglobulin receptor of the marsupial Macropus eugenii (tammar wallaby),” European Journal of Immunogenetics, vol. 29, no. 2, pp. 87–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Braathen, V. S. Hohman, P. Brandtzaeg, and F.-E. Johansen, “Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians,” The Journal of Immunology, vol. 178, no. 3, pp. 1589–1597, 2007. View at Google Scholar · View at Scopus
  126. M. J. Lewis, B. Wagner, R. M. Irvine, and J. M. Woof, “IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA,” Mucosal Immunology, vol. 3, no. 6, pp. 610–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. A. J. Leon, D. Banner, L. Xu et al., “Sequencing, annotation, and characterization of the influenza ferret infectome,” Journal of Virology, vol. 87, no. 4, pp. 1957–1966, 2013. View at Publisher · View at Google Scholar
  128. W. H. Wieland, D. Orzáez, A. Lammers, H. K. Parmentier, M. W. A. Verstegen, and A. Schots, “A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity,” Biochemical Journal, vol. 380, no. 3, pp. 669–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. K. Hamuro, H. Suetake, N. R. Saha, K. Kikuchi, and Y. Suzuki, “A teleost polymeric Ig receptor exhibiting two Ig-like domains transports tetrameric IgM into the skin,” The Journal of Immunology, vol. 178, no. 9, pp. 5682–5689, 2007. View at Google Scholar · View at Scopus
  130. J. H. W. M. Rombout, S. J. L. van der Tuin, G. Yang et al., “Expression of the polymeric immunoglobulin receptor (pIgR) in mucosal tissues of common carp (Cyprinus carpio L.),” Fish and Shellfish Immunology, vol. 24, no. 5, pp. 620–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. L.-N. Feng, D.-Q. Lu, J.-X. Bei et al., “Molecular cloning and functional analysis of polymeric immunoglobulin receptor gene in orange-spotted grouper (Epinephelus coioides),” Comparative Biochemistry and Physiology B, vol. 154, no. 3, pp. 282–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. A. E. Østergaard, S. A. M. Martin, T. Wang, R. J. M. Stet, and C. J. Secombes, “Rainbow trout (Oncorhynchus mykiss) possess multiple novel immunoglobulin-like transcripts containing either an ITAM or ITIMs,” Developmental and Comparative Immunology, vol. 33, no. 4, pp. 525–532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Eiffert, E. Quentin, and J. Decker, “The primary structure of the human free secretory component and the arrangement of disulfide bonds,” Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, vol. 365, no. 12, pp. 1489–1495, 1984. View at Publisher · View at Google Scholar · View at Scopus
  134. E. Fallgreen-Gebauer, W. Gebauer, A. Bastian et al., “The covalent linkage of secretory component to IgA. Structure of sIgA,” Biological Chemistry Hoppe-Seyler, vol. 374, no. 11, pp. 1023–1028, 1993. View at Publisher · View at Google Scholar · View at Scopus
  135. J. M. Woof, “The structure of IgA,” in Mucosal Immune Defense: Immunoglobulin A, C. S. Kaetzel, Ed., chapter 1, pp. 1–24, Springer, New York, NY, USA, 2007. View at Publisher · View at Google Scholar
  136. A. Bonner, A. Almogren, P. B. Furtado, M. A. Kerr, and S. J. Perkins, “Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity,” Mucosal Immunology, vol. 2, no. 1, pp. 74–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Bonner, A. Almogren, P. B. Furtado, M. A. Kerr, and S. J. Perkins, “The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses,” The Journal of Biological Chemistry, vol. 284, no. 8, pp. 5077–5087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Johansen, B. Braathen, and P. Brandtzaeg, “Role of J chain in secretory immunoglobulin formation,” Scandinavian Journal of Immunology, vol. 52, no. 3, pp. 240–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. B. A. Hendrickson, D. A. Conner, D. J. Ladd et al., “Altered hepatic transport of immunoglobulin A in mice lacking the J chain,” Journal of Experimental Medicine, vol. 182, no. 6, pp. 1905–1911, 1995. View at Publisher · View at Google Scholar · View at Scopus
  140. B. A. Hendrickson, L. Rindisbacher, B. Corthesy et al., “Lack of association of secretory component with IgA in J chain-deficient mice,” The Journal of Immunology, vol. 157, no. 2, pp. 750–754, 1996. View at Google Scholar · View at Scopus
  141. N. Lycke, L. Erlandsson, L. Ekman, K. Schön, and T. Leanderson, “Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection,” The Journal of Immunology, vol. 163, no. 2, pp. 913–919, 1999. View at Google Scholar · View at Scopus
  142. F.-E. Johansen, R. Braathen, and P. Brandtzaeg, “The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA,” The Journal of Immunology, vol. 167, no. 9, pp. 5185–5192, 2001. View at Google Scholar · View at Scopus
  143. R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. M. McFall-Ngai, “Adaptive immunity: care for the community,” Nature, vol. 445, no. 7124, p. 153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. A. J. Macpherson, K. D. McCoy, F.-E. Johansen, and P. Brandtzaeg, “The immune geography of IgA induction and function,” Mucosal Immunology, vol. 1, no. 1, pp. 11–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Kvale and P. Brandtzaeg, “Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29,” Gut, vol. 36, no. 5, pp. 737–742, 1995. View at Publisher · View at Google Scholar · View at Scopus
  147. L. V. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon, “Molecular analysis of commensal host-microbial relationships in the intestine,” Science, vol. 291, no. 5505, pp. 881–884, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Hapfelmeier, M. A. E. Lawson, E. Slack et al., “Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses,” Science, vol. 328, no. 5986, pp. 1705–1709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. D. H. Reikvam, M. Derrien, R. Islam et al., “Epithelial-microbial cross-talk in polymeric Ig receptor deficient mice,” European Journal of Immunology, vol. 42, no. 11, pp. 2959–2970, 2012. View at Publisher · View at Google Scholar
  150. E. W. Rogier, A. L. Frantz, M. E. C. Bruno et al., “Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 8, pp. 3074–3079, 2014. View at Publisher · View at Google Scholar
  151. G. M. Barton and R. Medzhitov, “Toll-like receptor signaling pathways,” Science, vol. 300, no. 5625, pp. 1524–1525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Takeda and S. Akira, “Toll receptors and pathogen resistance,” Cellular Microbiology, vol. 5, no. 3, pp. 143–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Cario and D. K. Podolsky, “Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease,” Infection and Immunity, vol. 68, no. 12, pp. 7010–7017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Hausmann, S. Kiessling, S. Mestermann et al., “Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation,” Gastroenterology, vol. 122, no. 7, pp. 1987–2000, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. M. T. Abreu, L. S. Thomas, S. Y. Tesfay et al., “Regulation of TLR4 and MD-2 in the intestinal epithelium: evidence for dysregulated LPS signaling in human inflammatory bowel disease,” in Proceedings of the 90th Annual Meeting of the American Association for Immunologists, Abstract 36.34, Denver, Colo, USA, 2003.
  156. T. A. Schneeman, M. E. C. Bruno, H. Schjerven, F.-E. Johansen, L. Chady, and C. S. Kaetzel, “Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses,” The Journal of Immunology, vol. 175, no. 1, pp. 376–384, 2005. View at Google Scholar · View at Scopus
  157. M. E. C. Bruno, A. L. Frantz, E. W. Rogier, F.-E. Johansen, and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells,” Mucosal Immunology, vol. 4, no. 4, pp. 468–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. M. E. C. Bruno, E. W. Rogier, A. L. Frantz, A. T. Stefka, S. N. Thompson, and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis,” Immunological Investigations, vol. 39, no. 4-5, pp. 356–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. A. L. Frantz, E. W. Rogier, C. R. Weber et al., “Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides,” Mucosal Immunology, vol. 5, no. 5, pp. 501–512, 2012. View at Publisher · View at Google Scholar
  160. E. W. Rogier, A. L. Frantz, M. E. C. Bruno, and C. S. Kaetzel, “Secretory IgA is concentrated in the outer layer of intestinal mucus along with gut bacteria,” Pathogens. In press.
  161. M. B. Geuking, K. D. McCoy, and A. J. Macpherson, “The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism,” Seminars in Immunology, vol. 24, no. 1, pp. 36–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interactions between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268–1273, 2012. View at Publisher · View at Google Scholar
  163. A. J. Macpherson, M. B. Geuking, E. Slack, S. Hapfelmeier, and K. D. McCoy, “The habitat, double life, citizenship, and forgetfulness of IgA,” Immunological Reviews, vol. 245, no. 1, pp. 132–146, 2012. View at Publisher · View at Google Scholar · View at Scopus