Table of Contents
ISRN Biomarkers
Volume 2014 (2014), Article ID 562587, 5 pages
http://dx.doi.org/10.1155/2014/562587
Clinical Study

Evaluation of CD25+CD4+ Regulatory T-Lymphocyte Subpopulations in Coronary Artery Diseases Patients

1Department of Biochemistry, Silesian Medical University, Ul. Jordana 19, 41-808 Zabrze, Poland
2Department of Cardiology, Silesian Medical University, 41-808 Zabrze, Poland
3Department of Immunology, Silesian Medical University, 41-808 Zabrze, Poland

Received 9 December 2013; Accepted 15 January 2014; Published 4 March 2014

Academic Editors: H.-L. Chan and N. Lisitza

Copyright © 2014 Ewa Romuk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. J. Binder, M.-K. Chang, P. X. Shaw et al., “Innate and acquired immunity in atherogenesis,” Nature Medicine, vol. 8, no. 11, pp. 1218–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi, “Regulatory T cells: how do they suppress immune responses?” International Immunology, vol. 21, no. 10, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Mallat, A. Gojova, V. Brun et al., “Induction of a regulatory T cell type I response reduces the development of atherosclerosis in apolipoprotein E-knockout mice,” Circulation, vol. 108, no. 10, pp. 1232–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Methe, S. Brunner, D. Wiegand, M. Nabauer, J. Koglin, and E. R. Edelman, “Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes,” Journal of the American College of Cardiology, vol. 45, no. 12, pp. 1939–1945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sakaguchi, K. Wing, and M. Miyara, “Regulatory T cells—a brief history and perspective,” European Journal of Immunology, vol. 37, no. 1, pp. S116–S123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Miyara and S. Sakaguchi, “Natural regulatory T cells: mechanisms of suppression,” Trends in Molecular Medicine, vol. 13, no. 3, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Mor, G. Luboshits, D. Planer, G. Keren, and J. George, “Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes,” European Heart Journal, vol. 27, no. 21, pp. 2530–2537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Bacchetta, E. Gambineri, and M.-G. Roncarolo, “Role of regulatory T cells and FOXP3 in human diseases,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 227–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Nakamura, A. Kitani, I. Fuss et al., “TGF-β1 plays an important role in the mechanism of CD4 +CD25+ regulatory T cell activity in both humans and mice,” Journal of Immunology, vol. 172, no. 2, pp. 834–842, 2004. View at Google Scholar · View at Scopus
  12. A. Mor, D. Planer, G. Luboshits et al., “Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 893–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. G. Zheng, J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz, “Natural and induced CD4+CD25+ cells educate CD4 +CD25- cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10,” Journal of Immunology, vol. 172, no. 9, pp. 5213–5221, 2004. View at Google Scholar · View at Scopus
  14. T. R. Malek, A. Yu, V. Vincek, P. Scibelli, and L. Kong, “CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice: implications for the nonredundant function of IL-2,” Immunity, vol. 17, no. 2, pp. 167–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Birebent, R. Lorho, H. Lechartier et al., “Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on CTLA-4 expression,” European Journal of Immunology, vol. 34, no. 12, pp. 3485–3496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. D. Ochs, S. F. Ziegler, and T. R. Torgerson, “FOXP3 acts as a rheostat of the immune response,” Immunological Reviews, vol. 203, pp. 156–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. von Boehmer, “Mechanisms of suppression by suppressor T cells,” Nature Immunology, vol. 6, no. 4, pp. 338–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T cells work,” Nature Reviews Immunology, vol. 8, no. 7, pp. 523–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Nakamura, A. Kitani, and W. Strober, “Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β,” Journal of Experimental Medicine, vol. 194, no. 5, pp. 629–644, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Ait-Oufella, B. L. Salomon, S. Potteaux et al., “Natural regulatory T cells control the development of atherosclerosis in mice,” Nature Medicine, vol. 12, no. 2, pp. 178–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Q.-W. Ji, M. Guo, J.-S. Zheng et al., “Downregulation of T helper cell type 3 in patients with acute coronary syndrome,” Archives of Medical Research, vol. 40, no. 4, pp. 285–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Elhage, P. Gourdy, L. Brauchet et al., “Deleting TCRαβ+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice,” American Journal of Pathology, vol. 165, no. 6, pp. 2013–2018, 2004. View at Google Scholar · View at Scopus
  24. O. J. de Boer, J. J. van der Meer, P. Teeling, C. M. van der Loos, and A. C. van der Wal, “Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions,” PloS ONE, vol. 2, no. 1, articel e779, 2007. View at Google Scholar · View at Scopus
  25. J. W. Verbsky, “Therapeutic use of T regulatory cells,” Current Opinion in Rheumatology, vol. 19, no. 3, pp. 252–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Askenasy, A. Kaminitz, and S. Yarkoni, “Mechanisms of T regulatory cell function,” Autoimmunity Reviews, vol. 7, no. 5, pp. 370–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Langier, K. Sade, and S. Kivity, “Regulatory T cells: the suppressor arm of the immune system,” Autoimmunity Reviews, vol. 10, no. 2, pp. 112–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J.-J. Xie, J. Wang, T.-T. Tang et al., “The Th17/Treg functional imbalance during atherogenesis in ApoE-/- mice,” Cytokine, vol. 49, no. 2, pp. 185–193, 2010. View at Publisher · View at Google Scholar · View at Scopus