Table of Contents
International Scholarly Research Notices
Volume 2014, Article ID 572162, 11 pages
http://dx.doi.org/10.1155/2014/572162
Research Article

Heat and Mass Transfer on MHD Flow of a Viscoelastic Fluid through Porous Media over a Shrinking Sheet

Department of Mathematics, Institute of Technical Education and Research, Siksha “O” Anusandhan University, Khandagiri, Bhubaneswar, Odisha 751030, India

Received 8 April 2014; Accepted 17 June 2014; Published 30 September 2014

Academic Editor: Mohamed Ali

Copyright © 2014 D. Bhukta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Paullet and P. Weidman, “Analysis of stagnation point flow toward a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 42, no. 9, pp. 1084–1091, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  2. L. J. Crane, “Flow past a stretching plate,” Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Chamkha, “MHD flow of a uniformly streched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction,” International Communications in Heat and Mass Transfer, vol. 30, no. 3, pp. 413–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Hossain and S. Munir, “Mixed convection flow from a vertical flat plate with temperature dependent viscosity,” International Journal of Thermal Sciences, vol. 39, no. 2, pp. 173–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. A. Mahmoud, “A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate,” Mathematical Problems in Engineering, vol. 2007, Article ID 41323, 7 pages, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. A. Ishak, R. Nazar, and I. Pop, “Unsteady mixed convection boundary layer flow due to a stretching vertical surface,” The Arabian Journal for Science and Engineering B: Engineering, vol. 31, no. 2, pp. 165–182, 2006. View at Google Scholar · View at MathSciNet · View at Scopus
  7. T. R. Mahapatra and A. S. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat and Mass Transfer, vol. 38, no. 6, pp. 517–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. T. R. Mahapatra and A. S. Gupta, “Stagnation-point flow towards stretching surface,” The Canadian Journal of Chemical Engineering, vol. 81, no. 2, pp. 258–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Sammer, “Heat and mass transfer over an accelerating surface with heat source in presence of magnetic field,” International Journal of Theoretical and Applied Mechanics, vol. 4, pp. 281–293, 2009. View at Google Scholar
  10. C. Y. Wang, “Stagnation flow towards a shrinking sheet,” International Journal of Non-Linear Mechanics, vol. 43, no. 5, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Ahmad and N. Khan, “Boundary layer flow past a stretching plate with suction and heat transfer with variable conductivity,” Indian Journal of Engineering and Materials Sciences, vol. 7, no. 1, pp. 51–53, 2000. View at Google Scholar · View at Scopus
  12. E. M. A. Elbashbeshy and M. A. A. Bazid, “Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection,” Applied Mathematics and Computation, vol. 158, no. 3, pp. 799–807, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. R. Cortell, “Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing,” Fluid Dynamics Research, vol. 37, no. 4, pp. 231–245, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. S. P. Anjali Devi and B. Ganga, “Viscous dissipation effect on nonlinear MHD flow in a porous medium over a stretching porous surface,” International Journal of Applied Mathematics and Mechanics, vol. 5, pp. 45–59, 2009. View at Google Scholar
  15. A. Basiri Parsa, M. M. Rashidi, O. Anwar Bég, and S. M. Sadri, “Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods,” Computers in Biology and Medicine, vol. 43, no. 9, pp. 1142–1153, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Rashidi and S. A. M. Pour, “A novel analytical solution of heat transfer of a micropolar fluid through a porous medium with radiation by DTM-Padé,” Heat Transfer—Asian Research, vol. 39, no. 8, pp. 575–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. M. Rashidi, E. Momoniat, M. Ferdows, and A. Basiriparsa, “Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media,” Mathematical Problems in Engineering, vol. 2014, Article ID 239082, 21 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  18. C. Midya, “Heat transfer in an electrically conducting visco -elastic flow over a shrinking sheet subject to transverse magnetic field,” International Journal of Applied Mathematics and Mechanics, vol. 93, pp. 54–69, 2013. View at Google Scholar
  19. K. R. Rajagopal, T. Y. Na, and A. S. Gupta, “Flow of a viscoelastic fluid over a stretching sheet,” Rheologica Acta, vol. 23, no. 2, pp. 213–215, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Cortell, “Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 29, no. 2, pp. 155–161, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. A. Chakrabarti and A. S. Gupta, “Hydromagnetic flow and heat transfer over a stretching sheet,” Quarterly of Applied Mathematics, vol. 37, no. 1, pp. 73–78, 1979. View at Google Scholar · View at Scopus