Table of Contents
ISRN Endocrinology
Volume 2014 (2014), Article ID 601352, 7 pages
http://dx.doi.org/10.1155/2014/601352
Research Article

Pioglitazone Inhibits the Expressions of p22phox and p47phox in Rat Mesangial Cells In Vitro

Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No. 17 Lujiang Road, Hefei 230001, China

Received 30 August 2013; Accepted 19 November 2013; Published 3 February 2014

Academic Editors: W. B. Chan and C. Fürnsinn

Copyright © 2014 Shan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Singh, P. Winocour, and K. Farrington, “Oxidative stress in early diabetic nephropathy: fueling the fire,” Nature Reviews Endocrinology, vol. 7, no. 3, pp. 176–184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Inoguchi, “The role of oxidative stress in the pathogenesis of diabetic nephropathy,” Japanese Journal of Nephrology, vol. 53, no. 7, pp. 1016–1020, 2011. View at Google Scholar · View at Scopus
  3. Y. Qian, E. Feldman, S. Pennathur, M. Kretzler, and F. C. Brosius III, “From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy,” Diabetes, vol. 57, no. 6, pp. 1439–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Y. Hu, S. D. Ye, L. L. Zhao, M. Zheng, F. Z. Wu, and Y. Chen, “Hydrochloride pioglitazone decreases urinary cytokines excretion in type 2 diabetes,” Clinical Endocrinology, vol. 73, no. 6, pp. 739–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Toblli, G. Cao, J. F. Giani, M. Angerosa, F. P. Dominici, and N. F. Gonzalez-Cadavid, “Antifibrotic effects of pioglitazone at low doses on the diabetic rat kidney are associated with the improvement of markers of cell turnover, tubular and endothelial integrity, and angiogenesis,” Kidney and Blood Pressure Research, vol. 34, no. 1, pp. 20–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Masoad, M. M. Ewais, M. K. Tawfik, and H. S. Abd El-All, “Effect of mononuclear cells versus pioglitazone on streptozotocin-induced diabetic nephropathy in rats,” Pharmacological Reports, vol. 64, no. 5, pp. 1223–1233, 2012. View at Google Scholar
  7. D. H. Shi, J. H. Wu, H. M. Ge, and R. X. Tan, “Protective effect of hopeahainol A, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced injury in PC12 cells,” Environmental Toxicology and Pharmacology, vol. 28, no. 1, pp. 30–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Deepa, N. Jayakumari, and S. V. Thomas, “Oxidative stress is increased in women with epilepsy: is it a potential mechanism of anti-epileptic drug-induced teratogenesis?” Annals of Indian Academy of Neurology, vol. 15, no. 4, pp. 281–286, 2012. View at Publisher · View at Google Scholar
  9. C. Campos, “Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae,” Postgraduate Medicine, vol. 124, no. 6, pp. 90–97, 2012. View at Publisher · View at Google Scholar
  10. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Folli, D. Corradi, P. Fanti et al., “The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach,” Current Diabetes Reviews, vol. 7, no. 5, pp. 313–324, 2011. View at Google Scholar · View at Scopus
  12. I. T. Lee, R. H. Shih, C. C. Lin, J. T. Chen, and C. M. Yang, “Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells,” Cell Communication and Signaling, vol. 10, no. 1, article 33, 2012. View at Publisher · View at Google Scholar
  13. X. Wang, Z. Wang, J. Z. Liu et al., “Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte,” Toxicology In Vitro, vol. 25, no. 4, pp. 839–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Mokini, M. L. Marcovecchio, and F. Chiarelli, “Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways,” Diabetes Research and Clinical Practice, vol. 87, no. 3, pp. 313–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. M. Bandeira, L. J. S. da Fonseca, G. D. S. Guedes, L. A. Rabelo, M. O. Goulart, and S. M. Vasconcelos, “Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus,” International Journal of Molecular Sciences, vol. 14, no. 2, pp. 3265–3284, 2013. View at Publisher · View at Google Scholar
  16. X. Kong, Y. Zhang, H. B. Wu, F. X. Li, D. Y. Zhang, and Q. Su, “Combination therapy with losartan and pioglitazone additively reduces renal oxidative and nitrative stress induced by chronic high fat, sucrose, and sodium intake,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 856085, 9 pages, 2012. View at Publisher · View at Google Scholar
  17. F. Jiang, Y. Zhang, and G. J. Dusting, “NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair,” Pharmacological Reviews, vol. 63, no. 1, pp. 218–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. X. Chen and A. Stinnett, “Critical role of the NADPH oxidase subunit p47phox on vascular TLR expression and neointimal lesion formation in high-fat diet-induced obesity,” Laboratory Investigation, vol. 88, no. 12, pp. 1316–1328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. F. Wang, S. D. Ye, and Y. Xing, “Effect of different dosages of piogitazone on the oxidative stress in the kidney in STZ-induced diabetic rats,” Chinese Pharmacological Bulletin, vol. 29, no. 1, pp. 85–88, 2013. View at Google Scholar
  20. J. E. Toblli, M. G. Ferrini, G. Cao, D. Vernet, M. Angerosa, and N. F. Gonzalez-Cadavid, “Antifibrotic effects of pioglitazone on the kidney in a rat model of type 2 diabetes mellitus,” Nephrology Dialysis Transplantation, vol. 24, no. 8, pp. 2384–2391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Kampoli, D. Tousoulis, Z. Pallantza et al., “Comparable effects of pioglitazone and perindopril on circulating endothelial progenitor cells, inflammatory process and oxidative stress in patients with diabetes mellitus,” International Journal of Cardiology, vol. 157, no. 3, pp. 413–415, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. C. R. Jesse, C. F. Bortolatto, E. A. Wilhelm, S. S. Roman, M. Prigol, and C. W. Nogueira, “The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin induced renal damage in mice,” Journal of Applied Toxicology, vol. 34, no. 1, pp. 25–32, 2014. View at Publisher · View at Google Scholar
  23. H. C. Yang, S. Deleuze, Y. Zuo, S. A. Potthoff, L. J. Ma, and A. B. Fogo, “The PPARγ agonist pioglitazone ameliorates aging-related progressive renal injury,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2380–2388, 2009. View at Publisher · View at Google Scholar · View at Scopus