Table of Contents
ISRN Pharmacology
Volume 2014 (2014), Article ID 608590, 7 pages
http://dx.doi.org/10.1155/2014/608590
Research Article

Efficacy of Composite Extract from Leaves and Fruits of Medicinal Plants Used in Traditional Diabetic Therapy against Oxidative Stress in Alloxan-Induced Diabetic Rats

1Department of Biochemistry & Biochemical Engineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad 211007, India
2Department of Biochemistry, University of Allahabad, Allahabad 211002, India

Received 13 November 2013; Accepted 8 January 2014; Published 4 March 2014

Academic Editors: R. Couture, G. Gervasini, M. Labieniec, and S. Tsuruoka

Copyright © 2014 Brahm Kumar Tiwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ramadas, K. F. Quek, C. K. Y. Chan, and B. Oldenburg, “Web-based interventions for the management of type 2 diabetes mellitus: a systematic review of recent evidence,” International Journal of Medical Informatics, vol. 80, no. 6, pp. 389–405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. K. Patel, S. K. Prasad, R. Kumar, and S. Hemalatha, “An overview on antidiabetic medicinal plants having insulin mimetic property,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 4, pp. 320–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Patil, R. Patil, B. Ahirwar, and D. Ahirwar, “Current status of Indian medicinal plants with antidiabetic potential: a review,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 2, pp. S291–S298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Manna, J. Ghosh, J. Das, and P. C. Sil, “Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid,” Toxicology and Applied Pharmacology, vol. 244, no. 2, pp. 114–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Manna, J. Das, J. Ghosh, and P. C. Sil, “Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid,” Free Radical Biology and Medicine, vol. 48, no. 11, pp. 1465–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. I. Rizvi and N. Srivastava, “Erythrocyte plasma membrane redox system in first degree relatives of type 2 diabetic patients,” International Journal of Diabetes Mellitus, vol. 2, no. 2, pp. 119–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Robertson, “Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes,” The Journal of Biological Chemistry, vol. 279, no. 41, pp. 42351–42354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. J. Lyons, “Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes?” Diabetic Medicine, vol. 8, no. 5, pp. 411–419, 1991. View at Google Scholar · View at Scopus
  9. G. R. Gandhi, S. Ignacimuthu, and M. G. Paulraj, “Hypoglycemic and β-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats,” Food and Chemical Toxicology, vol. 50, no. 5, pp. 1667–1674, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Mohammad and I. Mohammad, “Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos leaves,” World Applied Sciences Journal, vol. 7, no. 10, pp. 1231–1234, 2009. View at Google Scholar
  11. R. Gupta, K. G. Bajpai, S. Johri, and A. M. Saxena, “An overview of Indian novel traditional medicinal plants with anti-diabetic potentials,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 5, no. 1, pp. 1–17, 2008. View at Google Scholar · View at Scopus
  12. I. J. Atangwho, P. E. Ebong, E. U. Eyong, and G. E. Egbung, “Combined extracts of Vernonia amygdalina and Azadirachta indica may substitute insulin requirement in the management of type I diabetes,” Research Journal of Medicine and Medical Sciences, vol. 5, no. 1, pp. 35–39, 2010. View at Google Scholar
  13. H. Yankuzo, Q. U. Ahmed, R. I. Santosa, S. F. U. Akter, and N. A. Talib, “Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo,” Journal of Ethnopharmacology, vol. 135, no. 1, pp. 88–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. N. Kesari, S. Kesari, S. K. Singh, R. K. Gupta, and G. Watal, “Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals,” Journal of Ethnopharmacology, vol. 112, no. 2, pp. 305–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Arulselvan, G. P. Senthilkumar, D. S. Kumar, and S. Subramanian, “Anti-diabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats,” Pharmazie, vol. 61, no. 10, pp. 874–877, 2006. View at Google Scholar · View at Scopus
  16. P. K. Mukherjee, K. Maiti, K. Mukherjee, and P. J. Houghton, “Leads from Indian medicinal plants with hypoglycemic potentials,” Journal of Ethnopharmacology, vol. 106, no. 1, pp. 1–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Singh, D. Baxi, S. Banerjee, and A. V. Ramachandran, “Therapy with methanolic extract of Pterocarpus marsupium Roxb and Ocimum sanctum Linn reverses dyslipidemia and oxidative stress in alloxan induced type I diabetic rat model,” Experimental and Toxicologic Pathology, vol. 64, no. 5, pp. 441–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. K. B. Burade and B. S. Kuchekar, “Antidiabetic activity of madhunashini (MD-19) in alloxan induced diabetic mellitus,” Journal of Cell and Tissue Research, vol. 11, no. 1, pp. 2515–2520, 2011. View at Google Scholar
  19. G. Manonmani, V. Bhavapriya, S. Kalpana, S. Govindasamy, and T. Apparanantham, “Antioxidant activity of Cassia fistula (Linn.) flowers in alloxan induced diabetic rats,” Journal of Ethnopharmacology, vol. 97, no. 1, pp. 39–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. M. Prince, N. Kamalakkannan, and V. P. Menon, “Antidiabetic and antihyperlipidaemic effect of alcoholic Syzigium cumini seeds in alloxan induced diabetic albino rats,” Journal of Ethnopharmacology, vol. 91, no. 2-3, pp. 209–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. R. Leite, T. G. Araújo, B. M. Carvalho, N. H. Silva, V. L. M. Lima, and M. B. S. Maia, “Parkinsonia aculeata aqueous extract fraction: biochemical studies in alloxan-induced diabetic rats,” Journal of Ethnopharmacology, vol. 111, no. 3, pp. 547–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sadeghian, M. A. Boroumand, M. Sotoudeh-Anvari, S. Rabbani, M. Sheikhfathollahi, and A. Abbasi, “Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes,” Endokrynologia Polska, vol. 60, no. 4, pp. 258–262, 2009. View at Google Scholar · View at Scopus
  23. V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin et al., “Advanced oxidation protein products as a novel marker of oxidative stress in uremia,” Kidney International, vol. 49, no. 5, pp. 1304–1313, 1996. View at Google Scholar · View at Scopus
  24. M.-H. E. Spyridaki and P. A. Siskos, “An improved spectrophotometric method for the determination of free, bound and total N-acetylneuraminic acid in biological fluids,” Analytica Chimica Acta, vol. 327, no. 3, pp. 277–285, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. W. G. Duncombe, “The colorimetric micro-determination of long-chain fatty acids,” Biochemical Journal, vol. 88, pp. 7–10, 1963. View at Google Scholar
  26. D. W. Moss, D. N. Baron, P. G. Walker, and J. H. Wilkinson, “Standardization of clinical enzyme assays,” Journal of Clinical Pathology, vol. 24, no. 8, pp. 740–743, 1971. View at Google Scholar · View at Scopus
  27. S. Pandey, “Treatment of diabetes and hyperlipidemia with extracts of Eugenia jambolana seed and Aegle marmelos leaf extracts in alloxan induced diabetic rats,” International Journal of Pharma and Bio Sciences, vol. 1, no. 2, article 55, 2010. View at Google Scholar · View at Scopus
  28. K. B. Pandey, N. Mishra, and S. I. Rizvi, “Protein oxidation biomarkers in plasma of type 2 diabetic patients,” Clinical Biochemistry, vol. 43, no. 4-5, pp. 508–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. A. Hannan, L. Marenah, L. Ali, B. Rokeya, P. R. Flatt, and Y. H. A. Abdel-Wahab, “Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells,” Journal of Endocrinology, vol. 189, no. 1, pp. 127–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Gupta, M. Kataria, P. K. Gupta, S. Murganandan, and R. C. Yashroy, “Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats,” Journal of Ethnopharmacology, vol. 90, no. 2-3, pp. 185–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. V. Tembhurne and D. M. Sakarkar, “Protective effect of Murraya koenigii (L) leaves extract in streptozotocin induced diabetics rats involving possible antioxidant mechanism,” Journal of Medicinal Plant Research, vol. 4, no. 22, pp. 2418–2423, 2010. View at Google Scholar · View at Scopus
  32. H. F. Poon, V. Calabrese, G. Scapagnini, and D. A. Butterfield, “Free radicals and brain aging,” Clinics in Geriatric Medicine, vol. 20, no. 2, pp. 329–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. S. Berlett and E. R. Stadtman, “Protein oxidation in aging, disease, and oxidative stress,” The Journal of Biological Chemistry, vol. 272, no. 33, pp. 20313–20316, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. S. I. Rizvi, R. Jha, and P. K. Maurya, “Erythrocyte plasma membrane redox system in human aging,” Rejuvenation Research, vol. 9, no. 4, pp. 470–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Prasad and A. K. Sinha, “Free radical activity in hypertensive type 2 diabetic patients,” International Journal of Diabetes Mellitus, vol. 2, no. 3, pp. 141–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. M. Mehdi, P. Singh, and S. I. Rizvi, “Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress,” Disease Markers, vol. 32, no. 3, pp. 179–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Rizk and N. A. Sabri, “Evaluation of clinical activity and safety of Daflon 500 mg in type 2 diabetic female patients,” Saudi Pharmaceutical Journal, vol. 17, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. O. C. Ohaeri, “Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats,” Bioscience Reports, vol. 21, no. 1, pp. 19–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. P. K. Jensen, J. S. Christiansen, K. Steven, and H.-H. Parving, “Renal function in streptozotocin-diabetic rats,” Diabetologia, vol. 21, no. 4, pp. 409–414, 1981. View at Google Scholar · View at Scopus