Table of Contents
ISRN Applied Mathematics
Volume 2014, Article ID 634936, 9 pages
http://dx.doi.org/10.1155/2014/634936
Research Article

Wheeled Mobile Robot RBFNN Dynamic Surface Control Based on Disturbance Observer

1State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2Department of Mechanical Engineering, Chongqing Aerospace Polytechnic College, Chongqing 400021, China

Received 13 November 2013; Accepted 9 December 2013; Published 11 February 2014

Academic Editors: X.-G. Yan and X.-S. Yang

Copyright © 2014 Shaohua Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh, and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, no. 2, pp. 156–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Deng, A. Inoue, K. Sekiguchi, and L. Jiang, “Two-wheeled mobile robot motion control in dynamic environments,” Robotics and Computer-Integrated Manufacturing, vol. 26, no. 3, pp. 268–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Dong and K.-D. Kuhnert, “Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 261–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. De Sousa Jr., E. M. Hemerly, and R. K. Harrop Galvão, “Adaptive control for mobile robot using wavelet networks,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 32, no. 4, pp. 493–504, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. K. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 637–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Gu and H. Hu, “Receding horizon tracking control of wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, no. 4, pp. 743–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Martínez, O. Castillo, and L. T. Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Information Sciences, vol. 179, no. 13, pp. 2158–2174, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. W. B. J. Hakvoort, R. G. K. M. Aarts, J. van Dijk, and J. B. Jonker, “Lifted system iterative learning control applied to an industrial robot,” Control Engineering Practice, vol. 16, no. 4, pp. 377–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ye, “Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot,” Neurocomputing, vol. 71, no. 7-9, pp. 1561–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Samsudin, F. A. Ahmad, and S. Mashohor, “A highly interpretable fuzzy rule base using ordinal structure for obstacle avoidance of mobile robot,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 1631–1637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 609–615, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Patrick Yip and J. Karl Hedrick, “Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems,” International Journal of Control, vol. 71, no. 5, pp. 959–979, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. J. Na, X. Ren, G. Herrmann, and Z. Qiao, “Adaptive neural dynamic surface control for servo systems with unknown dead-zone,” Control Engineering Practice, vol. 19, no. 11, pp. 1328–1343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Chen, X. Ren, and J. A. Oliver, “Identifier-based adaptive neural dynamic surface control for uncertain DC-DC buck converter system with input constraint,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1871–1883, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, no. 7, pp. 1895–1903, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. X.-Y. Zhang and Y. Lin, “A robust adaptive dynamic surface control for nonlinear systems with hysteresis input,” Acta Automatica Sinica, vol. 36, no. 9, pp. 1264–1271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-S. Liu and H. Peng, “Disturbance estimation based tracking control for a robotic manipulator,” in Proceedings of the American Control Conference, vol. 1, pp. 92–96, June 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhongyi, S. Fuchun, and C. Jing, “Disturbance observer-based robust control of free-floating space manipulators,” IEEE Systems Journal, vol. 2, no. 1, pp. 114–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. G. Yan, S. Spurgeon, and C. Edwards, “State and parameter estimation for nonlinear delay systems using sliding mode techniques,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 1023–1029, 2013. View at Google Scholar
  20. X. G. Yan, J. Lam, H. S. Li, and I. M. Chen, “Decentralized control of nonlinear large-scale systems using dynamic output feedback,” Journal of Optimization Theory and Applications, vol. 104, no. 2, pp. 459–475, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. S. I. Han and K. S. Lee, “Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control,” Mechatronics, vol. 20, no. 3, pp. 384–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, “Nonlinear disturbance observer design for robotic manipulators,” Control Engineering Practice, vol. 21, no. 3, pp. 253–267, 2013. View at Google Scholar