Table of Contents
ISRN Obesity
Volume 2014, Article ID 638936, 13 pages
http://dx.doi.org/10.1155/2014/638936
Review Article

Obesity and Surgical Wound Healing: A Current Review

1Institute for Tissue Regeneration, Repair & Rehabilitation, Bay Pines VA Health Care System, Bay Pines, FL 33744, USA
2Division of Plastic Surgery, University of South Florida, Tampa, FL 33620, USA

Received 29 September 2013; Accepted 17 November 2013; Published 20 February 2014

Academic Editors: K. Abberton, K. C. Huang, and U. J. Magalang

Copyright © 2014 Yvonne N. Pierpont et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Cottam, S. G. Mattar, E. Barinas-Mitchell et al., “The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effect of weight loss,” Obesity Surgery, vol. 14, no. 5, pp. 589–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. W. E. Encinosa, D. M. Bernard, C.-C. Chen, and C. A. Steiner, “Healthcare utilization and outcomes after bariatric surgery,” Medical Care, vol. 44, no. 8, pp. 706–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. G. Camden and J. Gates, “Obesity: changing the face of geriatric care,” Ostomy Wound Management, vol. 52, no. 10, pp. 36–44, 2006. View at Google Scholar · View at Scopus
  4. K. E. Thorpe, C. S. Florence, D. H. Howard, and P. Joski, “The impact of obesity on rising medical spending,” Health Affairs, Web Exclusives, pp. 480–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Kelly, “Excision of the fat of the abdominal wall lipectomy,” Surgery, Gynecology & Obstetrics, vol. 10, article 229, 1910. View at Google Scholar
  6. J. A. Wilson and J. J. Clark, “Obesity: impediment to postsurgical wound healing,” Advances in Skin & Wound Care, vol. 17, no. 8, pp. 426–435, 2004. View at Google Scholar · View at Scopus
  7. P. R. Schauer and B. D. Schirmer, “The surgical management of obesity,” in Schwartz’s Principles of Surgery, pp. 997–1016, McGraw Hill Companies, New York, NY, USA, 8th edition, 2005. View at Google Scholar
  8. K. M. Flegal, D. Carroll, B. K. Kit, and C. L. Ogden, “Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010,” Journal of the American Medical Association, vol. 307, no. 5, pp. 491–497, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Coutinho, “Latin America consensus on obesity,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 43, pp. 21–67, 1999. View at Google Scholar
  10. I. Pitanguy, N. F. G. de Amorim, and H. N. Radwanski, “Contour surgery in the patient with great weight loss,” Aesthetic Plastic Surgery, vol. 24, no. 6, pp. 406–411, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Rosen, P. Orosan, and J. Reiter, “Cognitive behavior therapy for negative body image in obese women,” Behavior Therapy, vol. 26, no. 1, pp. 25–42, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Benotti, G. C. Wood, C. Still, A. Petrick, and W. Strodel, “Obesity disease burden and surgical risk,” Surgery for Obesity and Related Diseases, vol. 2, no. 6, pp. 600–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. P. Herman, J. D. Raman, S. Dong, D. Samadi, and D. S. Scherr, “Increasing body mass index negatively impacts outcomes following robotic radical prostatectomy,” Journal of the Society of Laparoendoscopic Surgeons, vol. 11, no. 4, pp. 438–442, 2007. View at Google Scholar · View at Scopus
  14. K. Jongnarangsin, A. Chugh, E. Good et al., “Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 19, no. 7, pp. 668–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Lübbeke, K. G. M. Moons, G. Garavaglia, and P. Hoffmeyer, “Outcomes of obese and nonobese patients undergoing revision total hip arthroplasty,” Arthritis Care and Research, vol. 59, no. 5, pp. 738–745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Parikh, I. Yermilov, M. Mcgory, S. Jain, C. Y. Ko, and M. Maggard, “Is high BMI associated with specific complications after laparoscopic Roux-en-Y gastric bypass?” American Surgeon, vol. 73, no. 10, pp. 959–962, 2007. View at Google Scholar · View at Scopus
  17. M. Rogliani, E. Silvi, L. Labardi, F. Maggiulli, and V. Cervelli, “Obese and nonobese patients: complications of abdominoplasty,” Annals of Plastic Surgery, vol. 57, no. 3, pp. 336–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Setälä, A. Papp, S. Joukainen et al., “Obesity and complications in breast reduction surgery: are restrictions justified?” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 2, pp. 195–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. J. Thomas, L. Goldman, C. M. Mangione et al., “Body mass index as a correlate of postoperative complications and resource utilization,” American Journal of Medicine, vol. 102, no. 3, pp. 277–283, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Mullen, G. P. Buzby, and D. C. Matthews, “Reduction of operative morbidity and mortality by combined preoperative and postoperative nutritional support,” Annals of Surgery, vol. 192, no. 5, pp. 604–613, 1980. View at Google Scholar · View at Scopus
  21. D. A. Anaya and E. P. Dellinger, “The obese surgical patient: a susceptible host for infection,” Surgical Infections, vol. 7, no. 5, pp. 473–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Bhatheja and D. L. Bhatt, “Clinical outcomes in metabolic syndrome,” Journal of Cardiovascular Nursing, vol. 21, no. 4, pp. 298–305, 2006. View at Google Scholar · View at Scopus
  23. J. Casey, W. R. Flinn, and J. S. T. Yao, “Correlation of immune and nutritional status with wound complications in patients undergoing vascular operations,” Surgery, vol. 93, no. 6, pp. 822–826, 1983. View at Google Scholar · View at Scopus
  24. U. Keller, “From obesity to diabetes,” International Journal for Vitamin and Nutrition Research, vol. 76, no. 4, pp. 172–177, 2006. View at Publisher · View at Google Scholar
  25. Surgery ASfMB, Bariatric Surgical Society Takes on New Name, New Mission, and New Surgery. Metabolic Surgery Expected to Play Bigger Role in Treating Type 2 Diabetes, 2013.
  26. A. S. Aly, A. E. Cram, M. Chao, J. Pang, and M. McKeon, “Belt lipectomy for circumferential truncal excess: The University of Iowa experience,” Plastic and Reconstructive Surgery, vol. 111, no. 1, pp. 398–413, 2003. View at Google Scholar · View at Scopus
  27. D. J. Hurwitz, J. P. Rubin, M. Risin, A. Sajjadian, and S. Sereika, “Correcting the saddlebag deformity in the massive weight loss patient,” Plastic and Reconstructive Surgery, vol. 114, no. 5, pp. 1313–1325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Hurwitz and T. E. Zewert, “Body contouring surgery in the bariatric surgical patient,” Operative Techniques in Plastic and Reconstructive Surgery, vol. 8, no. 2, pp. 87–95, 2002. View at Google Scholar
  29. M. J. Kamper, D. V. Galloway, and F. Ashley, “Abdominal panniculectomy after massive weight loss,” Plastic and Reconstructive Surgery, vol. 50, no. 5, pp. 441–446, 1972. View at Google Scholar · View at Scopus
  30. R. W. Postlethwait and W. D. Johnson, “Complications following surgery for duodenal ulcer in obese patients,” Archives of Surgery, vol. 105, no. 3, pp. 438–440, 1972. View at Google Scholar · View at Scopus
  31. K. J. Printen, S. C. Paulk, and E. E. Mason, “Acute postoperative wound complications after gastric surgery for morbid obesity,” American Surgeon, vol. 41, no. 8, pp. 483–485, 1975. View at Google Scholar · View at Scopus
  32. W. E. Matory Jr., J. O'Sullivan, G. Fudem, and R. Dunn, “Abdominal surgery in patients with severe morbid obesity,” Plastic and Reconstructive Surgery, vol. 94, no. 7, pp. 976–987, 1994. View at Google Scholar · View at Scopus
  33. J. P. Rubin, “Plastic surgery after massive weight loss,” Contemporary Surgery, vol. 61, pp. 599–603, 2005. View at Google Scholar
  34. R. I. Abdel-Moneim, “The hazards of surgery in the obese,” International Surgery, vol. 70, no. 2, pp. 101–103, 1985. View at Google Scholar · View at Scopus
  35. M. A. Carlson, “Acute wound failure,” Surgical Clinics of North America, vol. 77, no. 3, pp. 607–636, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. C. E. Yale, “Gastric surgery for morbid obesity. Complications and long-term weight control,” Archives of Surgery, vol. 124, no. 8, pp. 941–946, 1989. View at Google Scholar · View at Scopus
  37. W. R. Thompson, J. F. Ameral, and M. D. Caldwell, “Complications and weight loss in 150 consecutive gastric exclusion patients. Critical review,” The American Journal of Surgery, vol. 146, no. 5, pp. 602–612, 1983. View at Google Scholar · View at Scopus
  38. F. M. Grazer and R. M. Goldwyn, “Abdominoplasty assessed by survey, with emphasis on complications,” Plastic and Reconstructive Surgery, vol. 59, no. 4, pp. 513–517, 1977. View at Google Scholar · View at Scopus
  39. I. Pitanguy, “Abdominal lipectomy,” Clinics in Plastic Surgery, vol. 2, no. 3, pp. 401–410, 1975. View at Google Scholar · View at Scopus
  40. Z. M. Arthurs, D. Cuadrado, V. Sohn et al., “Post-bariatric panniculectomy: pre-panniculectomy body mass index impacts the complication profile,” The American Journal of Surgery, vol. 193, no. 5, pp. 567–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Manahan and M. A. Shermak, “Massive panniculectomy after massive weight loss,” Plastic and Reconstructive Surgery, vol. 117, no. 7, pp. 2191–2199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Wolf and H. W. Kuhlmann, “Reconstructive procedures after massive weight loss,” Obesity Surgery, vol. 17, no. 3, pp. 355–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. Finks, K. L. Kole, P. R. Yenumula et al., “Predicting risk for serious complications with bariatric surgery: results from the Michigan bariatric surgery collaborative,” Annals of Surgery, vol. 254, no. 4, pp. 633–640, 2011. View at Publisher · View at Google Scholar
  44. D. J. Ciesla, E. E. Moore, J. L. Johnson, J. M. Burch, C. C. Cothren, and A. Sauaia, “Obesity increases risk of organ failure after severe trauma,” Journal of the American College of Surgeons, vol. 203, no. 4, pp. 539–545, 2006. View at Publisher · View at Google Scholar
  45. L. Flancbaum and S. Belsley, “Factors affecting morbidity and mortality of Roux-en-Y gastric bypass for clinically severe obesity: an analysis of 1,000 consecutive open cases by a single surgeon,” Journal of Gastrointestinal Surgery, vol. 11, no. 4, pp. 500–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. A. McCullough, M. J. Gallagher, A. T. DeJong et al., “Cardiorespiratory fitness and short-term complications after bariatric surgery,” Chest, vol. 130, no. 2, pp. 517–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Peter Rubin, V. Nguyen, and A. Schwentker, “Perioperative management of the post-gastric-bypass patient presenting for body contour surgery,” Clinics in Plastic Surgery, vol. 31, no. 4, pp. 601–610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Greco, E. T. Castaldo, L. B. Nanney et al., “The effect of weight loss surgery and body mass index on wound complications after abdominal contouring operations,” Annals of Plastic Surgery, vol. 61, no. 3, pp. 235–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. P. T. Campbell, C. C. Newton, A. N. Dehal, E. J. Jacobs, A. V. Patel, and S. M. Gapstur, “Impact of body mass index on survival after colorectal cancer diagnosis: the cancer prevention study-II nutrition cohort,” Journal of Clinical Oncology, vol. 30, no. 1, pp. 42–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Bombelli, R. Facchetti, D. Fodri et al., “Impact of body mass index and waist circumference on the cardiovascular risk and all-cause death in a general population: data from the PAMELA study,” Nutrition, Metabolism & Cardiovascular Diseases, vol. 23, no. 7, pp. 650–656, 2013. View at Publisher · View at Google Scholar
  51. S. Y. Park, L. R. Wilkens, S. P. Murphy et al., “Body mass index and mortality in an ethnically diverse population: the Multiethnic Cohort Study,” European Journal of Epidemiology, vol. 27, no. 7, pp. 489–497, 2012. View at Publisher · View at Google Scholar
  52. J. P. Reis, C. A. MacEra, M. R. Araneta, S. P. Lindsay, S. J. Marshall, and D. L. Wingard, “Comparison of overall obesity and body fat distribution in predicting risk of mortality,” Obesity, vol. 17, no. 6, pp. 1232–1239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. McNeely, J. B. Shofer, D. L. Leonetti, W. Y. Fujimoto, and E. J. Boyko, “Associations among visceral fat, all-cause mortality, and obesity-related mortality in Japanese Americans,” Diabetes Care, vol. 35, no. 2, pp. 296–298, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. P. E. Serrano, S. A. Khuder, and J. J. Fath, “Obesity as a Risk Factor for Nosocomial Infections in Trauma Patients,” Journal of the American College of Surgeons, vol. 211, no. 1, pp. 61–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. M. Pitkin, “Abdominal hysterectomy in obese women,” Surgery Gynecology and Obstetrics, vol. 142, no. 4, pp. 532–536, 1976. View at Google Scholar · View at Scopus
  56. L. B. Pemberton and W. G. Manax, “Relationship of obesity to postoperative complications after cholecystectomy,” The American Journal of Surgery, vol. 121, no. 1, pp. 87–90, 1971. View at Google Scholar · View at Scopus
  57. A. J. Derzie, F. Silvestri, E. Liriano, and P. Benotti, “Wound closure technique and acute wound complications in gastric surgery for morbid obesity: a prospective randomized trial,” Journal of the American College of Surgeons, vol. 191, no. 3, pp. 238–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. V. L. Vastine, R. F. Morgan, G. S. Williams et al., “Wound complications of abdominoplasty in obese patients,” Annals of Plastic Surgery, vol. 42, no. 1, pp. 34–39, 1999. View at Google Scholar · View at Scopus
  59. M. A. Shermak, D. Chang, T. H. Magnuson, and M. A. Schweitzer, “An outcomes analysis of patients undergoing body contouring surgery after massive weight loss,” Plastic and Reconstructive Surgery, vol. 118, no. 4, pp. 1026–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Dubay and M. G. Franz, “Acute wound healing: the biology of acute wound failure,” Surgical Clinics of North America, vol. 83, no. 3, pp. 463–481, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. H. J. Sugerman, J. M. Kellum Jr., H. D. Reines, E. J. DeMaria, H. H. Newsome, and J. W. Lowry, “Greater risk of incisional hernia with morbidly obese than steroid-dependent patients and low recurrence with prefascial polypropylene mesh,” The American Journal of Surgery, vol. 171, no. 1, pp. 80–84, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. L. B. Salans, S. W. Cushman, and R. E. Weismann, “Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients,” Journal of Clinical Investigation, vol. 52, no. 4, pp. 929–941, 1973. View at Google Scholar · View at Scopus
  63. J. Smahel, “Adipose issue in plastic surgery,” Annals of Plastic Surgery, vol. 16, no. 5, pp. 444–453, 1986. View at Google Scholar · View at Scopus
  64. B. Markman, “Anatomy and physiology of adipose tissue,” Clinics in Plastic Surgery, vol. 16, no. 2, pp. 235–244, 1989. View at Google Scholar · View at Scopus
  65. F. Gottrup, R. Firmin, J. Rabkin, B. J. Halliday, and T. K. Hunt, “Directly measured tissue oxygen tension and arterial oxygen tension assess tissue perfusion,” Critical Care Medicine, vol. 15, no. 11, pp. 1030–1036, 1987. View at Google Scholar · View at Scopus
  66. K. Jonsson, J. A. Jensen, W. H. Goodson III et al., “Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients,” Annals of Surgery, vol. 214, no. 5, pp. 605–613, 1991. View at Google Scholar · View at Scopus
  67. K. Jonsson, T. K. Hunt, and S. J. Mathes, “Oxygen as an isolated variable influences resistance to infection,” Annals of Surgery, vol. 208, no. 6, pp. 783–787, 1988. View at Google Scholar · View at Scopus
  68. H. W. Hopf, T. K. Hunt, J. M. West et al., “Wound tissue oxygen tension predicts the risk of wound infection in surgical patients,” Archives of Surgery, vol. 132, no. 9, pp. 997–1005, 1997. View at Google Scholar · View at Scopus
  69. D. B. Allen, J. J. Maguire, M. Mahdavian et al., “Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms,” Archives of Surgery, vol. 132, no. 9, pp. 991–996, 1997. View at Google Scholar · View at Scopus
  70. T. K. Hunt, M. Linsey, M. Sonne, and E. Jawetz, “Oxygen tension and wound infection,” Surgical Forum, vol. 23, pp. 47–49, 1972. View at Google Scholar · View at Scopus
  71. J. Niinikoski, G. Grislis, and T. K. Hunt, “Respiratory gas tensions and collagen in infected wounds,” Annals of Surgery, vol. 175, no. 4, pp. 588–593, 1972. View at Google Scholar · View at Scopus
  72. T. K. Hunt and M. P. Pai, “The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis,” Surgery Gynecology and Obstetrics, vol. 135, no. 4, pp. 561–567, 1972. View at Google Scholar · View at Scopus
  73. F. X. Hausberger and M. M. Widelitz, “Distribution of labeled erythrocytes in adipose tissue and muscle in the rat,” The American Journal of Physiology, vol. 204, pp. 649–652, 1963. View at Google Scholar · View at Scopus
  74. D. M. Groszek, “Promoting wound healing in the obese patient,” AORN Journal, vol. 35, no. 6, pp. 1132–1138, 1982. View at Google Scholar · View at Scopus
  75. O. Gealekman, N. Guseva, C. Hartigan et al., “Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity,” Circulation, vol. 123, no. 2, pp. 186–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Khan, E. S. Muise, P. Iyengar et al., “Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI,” Molecular and Cellular Biology, vol. 29, no. 6, pp. 1575–1591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Spencer, R. Unal, B. Zhu et al., “Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. E1990–E1998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Hirsch and J. L. Knittle, “Cellularity of obese and nonobese human adipose tissue,” Federation Proceedings, vol. 29, no. 4, pp. 1516–1521, 1970. View at Google Scholar · View at Scopus
  79. E. Billings Jr. and J. W. May Jr., “Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery,” Plastic and Reconstructive Surgery, vol. 83, no. 2, pp. 368–381, 1989. View at Google Scholar · View at Scopus
  80. J. Ye, “Emerging role of adipose tissue hypoxia in obesity and insulin resistance,” International Journal of Obesity, vol. 33, no. 1, pp. 54–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. C. Robson, D. P. Hill, M. E. Woodske, and D. L. Steed, “Wound healing trajectories as predictors of effectiveness of therapeutic agents,” Archives of Surgery, vol. 135, no. 7, pp. 773–777, 2000. View at Google Scholar · View at Scopus
  82. Z. Michailidou, M. D. Jensen, D. A. Dumesic et al., “Omental 11β-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of obesity,” Obesity, vol. 15, no. 5, pp. 1155–1163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. Z. Michailidou, S. Turban, E. Miller et al., “Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice,” The Journal of Biological Chemistry, vol. 287, no. 6, pp. 4188–4197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. G. R. Small, P. W. F. Hadoke, I. Sharif et al., “Preventing local regeneration of qlucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 enhances angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12165–12170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Halberg, T. Khan, M. E. Trujillo et al., “Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue,” Molecular and Cellular Biology, vol. 29, no. 16, pp. 4467–4483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. T. De Jongh, E. H. Serné, R. G. Ijzerman, G. De Vries, and C. D. A. Stehouwer, “Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance,” Circulation, vol. 109, no. 21, pp. 2529–2535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. B. I. Levy, E. L. Schiffrin, J.-J. Mourad et al., “Impaired tissue perfusion a pathology common to hypertension, obesity, and diabetes mellitus,” Circulation, vol. 118, no. 9, pp. 968–976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. L. Chen, C. L. Chang, C. K. Sun et al., “Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation,” Journal of Translational Medicine, vol. 10, article 86, 2012. View at Publisher · View at Google Scholar
  89. H. Kiryu, W. Rikihisa, and M. Furue, “Encapsulated fat necrosis: a clinicopathological study of 8 cases and a literature review,” Journal of Cutaneous Pathology, vol. 27, no. 1, pp. 19–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. S. S. Kroll, G. Gherardini, J. E. Martin et al., “Fat necrosis in free and pedicled TRAM flaps,” Plastic and Reconstructive Surgery, vol. 102, no. 5, pp. 1502–1507, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. A. M. van Rij, C. S. De Alwis, P. Jiang et al., “Obesity and impaired venous function,” European Journal of Vascular and Endovascular Surgery, vol. 35, no. 6, pp. 739–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. W. K. Stadelmann, A. G. Digenis, and G. R. Tobin, “Impediments to wound healing,” The American Journal of Surgery, vol. 176, no. 2, supplement 1, pp. 39S–47S, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clinics in Plastic Surgery, vol. 30, no. 1, pp. 47–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Yosipovitch, A. DeVore, and A. Dawn, “Obesity and the skin: skin physiology and skin manifestations of obesity,” Journal of the American Academy of Dermatology, vol. 56, no. 6, pp. 901–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Cancello, C. Henegar, N. Viguerie et al., “Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss,” Diabetes, vol. 54, no. 8, pp. 2277–2286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Wu, V. V. Parekh, C. L. Gabriel et al., “Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 19, pp. E1143–E1152, 2012. View at Publisher · View at Google Scholar
  97. F. X. Hausberger, “Pathological changes in adipose tissue of obese mice,” Anatomical Record, vol. 154, no. 3, pp. 651–660, 1966. View at Google Scholar · View at Scopus
  98. L. Cai, Z. Wang, A. Ji et al., “Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity,” PLoS ONE, vol. 7, no. 5, Article ID e36785, 2012. View at Google Scholar
  99. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Viardot, L. K. Heilbronn, D. Samocha-Bonet et al., “Obesity is associated with activated and insulin resistant immune cells,” Diabetes/Metabolism Research and Reviews, vol. 28, no. 5, pp. 447–454, 2012. View at Publisher · View at Google Scholar
  101. K. A. Harford, C. M. Reynolds, F. C. McGillicuddy, and H. M. Roche, “Fats, inflammation and insulin resistance: Insights to the role of macrophage and T-cell accumulation in adipose tissue,” Proceedings of the Nutrition Society, vol. 70, no. 4, pp. 408–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. K. R. Taylor, R. E. Mills, A. E. Costanzo, and J. M. Jameson, “γδ T cells are reduced and rendered unresponsive by hyperglycemia and chronic TNFα in mouse models of obesity and metabolic disease,” PLoS ONE, vol. 5, no. 7, Article ID e11422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Sankhla, T. K. Sharma, K. Mathur et al., “Relationship of oxidative stress with obesity and its role in obesity induced metabolic syndrome,” Clinical Laboratory, vol. 58, no. 5-6, pp. 385–392, 2012. View at Google Scholar
  104. K. Kawai, A. Kageyama, T. Tsumano et al., “Effects of adiponectin on growth and differentiation of human keratinocytes—implicaiton of impaired wound healing in diabetes,” Biochemical and Biophysical Research Communications, vol. 374, no. 2, pp. 269–273, 2008. View at Google Scholar
  105. A. R. Shipman and G. W. M. Millington, “Obesity and the skin,” British Journal of Dermatology, vol. 165, no. 4, pp. 743–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Shibata, N. Ouchi, S. Kihara, K. Sato, T. Funahashi, and K. Walsh, “Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling,” The Journal of Biological Chemistry, vol. 279, no. 27, pp. 28670–28674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Shibata, Y. Tada, Y. Asano et al., “Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway,” The Journal of Immunology, vol. 189, no. 6, pp. 3231–3241, 2012. View at Publisher · View at Google Scholar
  108. W. B. Conolly, T. K. Hunt, M. Sonne, and J. E. Dunphy, “Influence of distant trauma on local wound infection,” Surgery Gynecology and Obstetrics, vol. 128, no. 4, pp. 713–718, 1969. View at Google Scholar · View at Scopus
  109. T. Hunt, “A new method of determining tissue oxygen tension,” The Lancet, vol. 2, no. 7374, pp. 1370–1371, 1964. View at Google Scholar · View at Scopus
  110. M. Di Girolamo, N. S. Skinner Jr., H. G. Hanley, and R. G. Sachs, “Relationship of adipose tissue blood flow to fat cell size and number,” The American Journal of Physiology, vol. 220, no. 4, pp. 932–937, 1971. View at Google Scholar · View at Scopus
  111. D. C. Hohn and T. K. Hunt, “Oxidative metabolism and microbicidal activity of rabbit phagocytes: cells from wounds and from peripheral blood,” Surgical Forum, vol. 26, pp. 85–87, 1975. View at Google Scholar · View at Scopus
  112. D. A. Anaya and E. P. Dellinger, “The obese surgical patient: a susceptible host for infection,” Surgical Infections, vol. 7, no. 5, pp. 473–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. D. C. Hohn, R. D. MacKay, B. Halliday, and T. K. Hunt, “Effect of O2 tension on microbicidal function of leukocytes in wounds and in vitro,” Surgical Forum, vol. 27, no. 62, pp. 18–20, 1976. View at Google Scholar · View at Scopus
  114. F. P. de Heredia, S. Gomez-Martinez, and A. Marcos, “Obesity, inflammation and the immune system,” Proceedings of the Nutrition Society, vol. 71, no. 2, pp. 332–338, 2012. View at Google Scholar
  115. T. J. Krizek, M. C. Robson, and E. Kho, “Bacterial growth and skin graft survival,” Surgical Forum, vol. 18, article 518, 1967. View at Google Scholar
  116. M. C. Robson, “Wound infection: a failure of wound healing caused by an imbalance of bacteria,” Surgical Clinics of North America, vol. 77, no. 3, pp. 637–650, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. M. C. Robson, T. J. Krizek, and J. P. Heggers, “Biology of surgical infection,” Current Problems in Surgery, vol. 10, no. 3, pp. 1–62, 1973. View at Google Scholar · View at Scopus
  118. M. C. Robson, B. D. Stenberg, and J. P. Heggers, “Wound healing alterations caused by infection,” Clinics in Plastic Surgery, vol. 17, no. 3, pp. 485–492, 1990. View at Google Scholar · View at Scopus
  119. J. Panuncialman and V. Falanga, “The science of wound bed preparation,” Surgical Clinics of North America, vol. 89, no. 3, pp. 611–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Udenfriend, “Formation of hydroxyproline in collagen,” Science, vol. 152, no. 3727, pp. 1335–1340, 1966. View at Google Scholar · View at Scopus
  121. M. C. Robson, “Infection in the surgical patient: an imbalance in the normal equilibrium,” Clinics in Plastic Surgery, vol. 6, no. 4, pp. 493–503, 1979. View at Google Scholar · View at Scopus
  122. A. B. G. Lansdown, B. Sampson, and A. Rowe, “Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds,” Journal of Anatomy, vol. 195, no. 3, pp. 375–386, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Barbul, S. A. Lazarou, D. T. Efron, H. L. Wasserkrug, and G. Efron, “Arginine enhances wound healing and lymphocyte immune responses in humans,” Surgery, vol. 108, no. 2, pp. 331–337, 1990. View at Google Scholar · View at Scopus
  124. W. H. Goodson III and T. K. Hunt, “Development of a new miniature method for the study of wound healing in human subjects,” Journal of Surgical Research, vol. 33, no. 5, pp. 394–401, 1982. View at Google Scholar · View at Scopus
  125. J. W. Madden and E. E. Peacock Jr., “Studies on the biology of collagen during wound healing. I. Rate of collagen synthesis and deposition in cutaneous wounds of the rat,” Surgery, vol. 64, no. 1, pp. 288–294, 1968. View at Google Scholar · View at Scopus
  126. J. Viljanto, Biochemical Basis of Tensile Strength in Wound Healing: An Experimental Study with Viscose Cellulose Sponges on Rats, tr.: Kirjapaino Polytypos, Turku, Finland, 1964.
  127. M. Ganeshkumar, T. Ponrasu, R. Krithika, K. Iyappan, V. S. Gayathri, and L. Suguna, “Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen,” Journal of Ethnopharmacology, vol. 142, no. 1, pp. 14–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. L. Xing, E. J. Culbertson, Y. Wen, M. C. Robson, and M. G. Franz, “Impaired laparotomy wound healing in obese rats,” Obesity Surgery, vol. 21, no. 12, pp. 1937–1946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. J. P. Cai, B. Harris, V. Falanga, W. H. Eaglstein, P. M. Mertz, and Y. H. Chin, “Recruitment of mononuclear cells into wounded skin: mechanism and modulation,” Progress in Clinical and Biological Research, vol. 365, pp. 243–256, 1991. View at Google Scholar · View at Scopus
  130. S. A. Xanthakos, “Nutritional deficiencies in obesity and after bariatric surgery,” Pediatric Clinics of North America, vol. 56, no. 5, pp. 1105–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. B. Ernst, M. Thurnheer, S. M. Schmid, and B. Schultes, “Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery,” Obesity Surgery, vol. 19, no. 1, pp. 66–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Schweiger, R. Weiss, E. Berry, and A. Keidar, “Nutritional deficiencies in bariatric surgery candidates,” Obesity Surgery, vol. 20, no. 2, pp. 193–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. V. Moizé, R. Deulofeu, F. Torres, J. M. De Osaba, and J. Vidal, “Nutritional intake and prevalence of nutritional deficiencies prior to surgery in a spanish morbidly obese population,” Obesity Surgery, vol. 21, no. 9, pp. 1382–1388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. C. F. Nicoletti, T. P. Lima, S. P. Donadelli et al., “New look at nutritional care for obese patient candidates for bariatric surgery,” Surgery for Obesity and Related Diseases, vol. 9, no. 4, pp. 520–525, 2013. View at Publisher · View at Google Scholar
  135. C. A. Blume, C. C. Boni, D. S. Casagrande et al., “Nutritional profile of patients before and after Roux-en-Y gastric bypass: 3-year follow-up,” Obesity Surgery, vol. 22, no. 11, pp. 1676–1685, 2012. View at Publisher · View at Google Scholar
  136. D. A. de Luis, D. Pacheco, O. Izaola, M. C. Terroba, L. Cuellar, and T. Martin, “Zinc and copper serum levels of morbidly obese patients before and after biliopancreatic diversion: 4 years of follow-up,” Journal of Gastrointestinal Surgery, vol. 15, no. 12, pp. 2178–2181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Damms-Machado, A. Friedrich, K. M. Kramer et al., “Pre- and postoperative nutritional deficiencies in obese patients undergoing laparoscopic sleeve gastrectomy,” Obesity Surgery, vol. 22, no. 6, pp. 881–889, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. A. B. G. Lansdown, “Calcium: a potential central regulator in wound healing in the skin,” Wound Repair and Regeneration, vol. 10, no. 5, pp. 271–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Balesaria, S. Sangha, and J. R. F. Walters, “Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption,” The American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 297, no. 6, pp. G1193–G1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Tamer, B. Mesci, I. Tamer, D. Kilic, and S. Arik, “Is vitamin D deficiency an independent risk factor for obesity and abdominal obesity in women?” Endokrynologia Polska, vol. 63, no. 3, pp. 196–201, 2012. View at Google Scholar
  141. R. Ghergherechi, N. Hazhir, and A. Tabrizi, “Comparison of vitamin D deficiency and secondary hyperparathyroidism in obese and non-obese children and adolescents,” Pakistan Journal of Biological Sciences, vol. 15, no. 3, pp. 147–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Ding, D. Gao, J. Wilding, P. Trayhurn, and C. Bing, “Vitamin D signaling in adipose tissue,” British Journal of Nutrition, vol. 108, no. 11, pp. 1915–1923, 2012. View at Publisher · View at Google Scholar
  143. R. B. Saper and R. Rash, “Zinc: an essential micronutrient,” American Family Physician, vol. 79, no. 9, pp. 768–772, 2009. View at Google Scholar · View at Scopus
  144. O. Kaidar-Person, B. Person, S. Szomstein, and R. J. Rosenthal, “Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part A: vitamins,” Obesity Surgery, vol. 18, no. 7, pp. 870–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Iwata, T. Takebayashi, H. Ohta, R. E. Alcalde, Y. Itano, and T. Matsumura, “Zinc accumulation and metallothionein gene expression in the proliferating epidermis during wound healing in mouse skin,” Histochemistry and Cell Biology, vol. 112, no. 4, pp. 283–290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. L. Costarelli, E. Muti, M. Malavolta et al., “Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects,” Journal of Nutritional Biochemistry, vol. 21, no. 5, pp. 432–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. A. A. Al-Kaisy, S. A. Salih, and H. A. Al-Biati, “Effect of zinc supplement in the prognosis of burn patients in Iraq,” Annals of Burns and Fire Disasters, vol. 19, no. 3, pp. 115–122, 2006. View at Google Scholar
  148. S. M. Levenson and E. Seifter, “Dysnutrition, wound healing, and resistance to infection,” Clinics in Plastic Surgery, vol. 4, no. 3, pp. 375–388, 1977. View at Google Scholar · View at Scopus
  149. M. Freiman, E. Seifter, C. Connerton, and S. M. Levenson, “Vitamin A deficiency and surgical stress,” Surgical Forum, vol. 21, pp. 81–82, 1970. View at Google Scholar · View at Scopus
  150. D. U. Talas, A. Nayci, S. Atis et al., “The effects of corticosteroids and vitamin A on the healing of tracheal anastomoses,” International Journal of Pediatric Otorhinolaryngology, vol. 67, no. 2, pp. 109–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. S. V. Pollack, “Wound healing: a review. III. Nutritional factors affecting wound healing,” Journal of Enterostomal Therapy, vol. 9, no. 2, pp. 28–33, 1982. View at Google Scholar · View at Scopus
  152. M. Haws, R. E. Brown, H. Suchy, and A. Roth, “Vitamin A-soaked gelfoam sponges and wound healing in steroid-treated animals,” Annals of Plastic Surgery, vol. 32, no. 4, pp. 418–422, 1994. View at Google Scholar · View at Scopus
  153. M. F. Trevisani, M. A. Ricci, J. T. Tolland, and W. C. Beck, “Effect of vitamin A and zinc on wound healing in steroid-treated mice,” Current Surgery, vol. 44, no. 5, pp. 390–393, 1987. View at Google Scholar · View at Scopus
  154. T. K. Hunt, H. P. Ehrlich, J. A. Garcia, and J. E. Dunphy, “Effect of vitamin A on reversing the inhibitory effect of cortisone on healing of open wounds in animals and man,” Annals of Surgery, vol. 170, no. 4, pp. 633–641, 1969. View at Publisher · View at Google Scholar
  155. J. Z. Williams and A. Barbul, “Nutrition and wound healing,” Surgical Clinics of North America, vol. 83, no. 3, pp. 571–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. R. F. Neiva, K. Al-Shammari, F. H. Nociti Jr., S. Soehren, and H.-L. Wang, “Effects of vitamin-B complex supplementation on periodontal wound healing,” Journal of Periodontology, vol. 76, no. 7, pp. 1084–1091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. C. W. Findlay Jr., “Effect of vitamin B12 on wound healing,” Proceedings of the Royal Society Experimental Biology and Medicine, vol. 82, no. 3, pp. 492–495, 1953. View at Publisher · View at Google Scholar
  158. J. L. Monaco and W. T. Lawrence, “Acute wound healing: an overview,” Clinics in Plastic Surgery, vol. 30, no. 1, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. E. G. Brunson, J. F. Smith, and R. Dixon, “Vitamin B12: an aid to oral mucous membrane healing,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 24, no. 1, pp. 102–112, 1967. View at Google Scholar · View at Scopus
  160. S. Agha-Mohammadi and D. J. Hurwitz, “Potential impacts of nutritional deficiency of postbariatric patients on body contouring surgery,” Plastic and Reconstructive Surgery, vol. 122, no. 6, pp. 1901–1914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. A. C. Cepeda-Lopez, S. J. M. Osendarp, A. Melse-Boonstra et al., “Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake,” The American Journal of Clinical Nutrition, vol. 93, no. 5, pp. 975–983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. J. P. McClung and J. P. Karl, “Iron deficiency and obesity: the contribution of inflammation and diminished iron absorption,” Nutrition Reviews, vol. 67, no. 2, pp. 100–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. E. M. del Giudice, N. Santoro, A. Amato et al., “Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 12, pp. 5102–5107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. A. Amato, N. Santoro, P. Calabrò et al., “Effect of body mass index reduction on serum hepcidin levels and iron status in obese children,” International Journal of Obesity, vol. 34, no. 12, pp. 1772–1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. M. J. Jacobson and J. Van Prohaska, “The healing of wounds in iron deficiency,” Surgery, vol. 57, no. 2, pp. 254–258, 1965. View at Google Scholar · View at Scopus
  166. W. L. Macon and W. J. Pories, “The effect of iron deficiency anemia on wound healing,” Surgery, vol. 69, no. 5, pp. 792–796, 1971. View at Google Scholar · View at Scopus
  167. H. W. Trueblood, T. S. Nelsen, and H. A. Oberhelman Jr., “The effect of acute anemia and iron deficiency anemia on wound healing,” Archives of Surgery, vol. 99, no. 1, pp. 113–116, 1969. View at Google Scholar · View at Scopus
  168. P. Kulapongs, R. Suskind, V. Vithayasai, and R. E. Olson, “Cell mediated immunity and phagocytosis and killing function in children with severe iron deficiency anemia,” The Lancet, vol. 2, no. 7882, pp. 689–691, 1974. View at Google Scholar · View at Scopus
  169. E. L. Howes, H. Briggs, R. Shea, and S. C. Harvey, “Effect of complete and partial starvation on the rate of fibroplasia in the healing wound,” Archives of Surgery, vol. 26, pp. 846–858, 1933. View at Google Scholar
  170. S. A. Localio, M. E. Morgan, and J. W. Hinton, “The biological chemistry of wound healing: the effect of di-methionine on healing of wounds in protein depleted animals,” Surgery, Gynecology & Obstetrics, vol. 86, no. 5, pp. 582–590, 1948. View at Google Scholar
  171. J. E. Rhoads, M. T. Fliegelman, and L. M. Panzer, “The mechanism of delayed wound healing in the presence of hypoproteinemia,” The Journal of the American Medical Association, vol. 118, pp. 21–23, 1942. View at Publisher · View at Google Scholar
  172. M. B. Williamson and H. J. Fromm, “The incorporation of sulfur amino acids into the proteins of regenerating wound tissue,” Journal of Biological Chemistry, vol. 212, no. 2, pp. 705–712, 1955. View at Google Scholar
  173. S. S. Malinowski, “Nutritional and metabolic complications of bariatric surgery,” American Journal of the Medical Sciences, vol. 331, no. 4, pp. 219–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  174. S. L. Doyle, C. L. Donohoe, J. Lysaght, and J. V. Reynolds, “Visceral obesity, metabolic syndrome, insulin resistance and cancer,” Proceedings of the Nutrition Society, vol. 71, no. 1, pp. 181–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  175. S. L. Doyle, J. Lysaght, and J. V. Reynolds, “Obesity and post-operative complications in patients undergoing non-bariatric surgery,” Obesity Reviews, vol. 11, no. 12, pp. 875–886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Agha-Mohammadi and D. J. Hurwitz, “Nutritional deficiency of post-bariatric surgery body contouring patients: What every plastic surgeon should know,” Plastic and Reconstructive Surgery, vol. 122, no. 2, pp. 604–613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Agha-Mohammadi and D. J. Hurwitz, “Enhanced recovery after body-contouring surgery: reducing surgical complication rates by optimizing nutrition,” Aesthetic Plastic Surgery, vol. 34, no. 5, pp. 617–627, 2010. View at Google Scholar
  178. D. ’Ettorre M, D. Gniuli, A. Iaconelli et al., “Wound healing process in post-bariatric patients: an experimental evaluation,” Obesity Surgery, vol. 20, no. 11, pp. 1552–1558, 2010. View at Publisher · View at Google Scholar
  179. M. H. Shuster and J. A. Vazquez, “Nutritional concerns related to roux-en-y gastric bypass: what every clinician needs to know,” Critical Care Nursing Quarterly, vol. 28, no. 3, pp. 227–262, 2005. View at Publisher · View at Google Scholar