Table of Contents
ISRN Organic Chemistry
Volume 2014, Article ID 639392, 7 pages
http://dx.doi.org/10.1155/2014/639392
Research Article

Synthesis and Biological Activities of 4-Aminoantipyrine Derivatives Derived from Betti-Type Reaction

1Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
2Department of Organic Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon 425001, India

Received 25 December 2013; Accepted 23 January 2014; Published 4 March 2014

Academic Editors: H. G. Bonacorso, N. Farfan, L. Forti, and Y. Génisson

Copyright © 2014 Ipsita Mohanram and Jyotsna Meshram. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Ugi, B. Werner, and A. Dömling, “The chemistry of isocyanides, their multicomponent reactions and their libraries,” Molecules, vol. 8, no. 1, pp. 53–66, 2003. View at Google Scholar · View at Scopus
  2. C. Mannich and W. Krosche, “Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin,” Archiv der Pharmazie, vol. 250, pp. 647–667, 1912. View at Google Scholar
  3. C. Cardellicchio, G. Ciccarella, F. Naso, E. Schingaro, and F. Scordari, “The Betti base: absolute configuration and routes to a family of related chiral nonracemic bases,” Tetrahedron Asymmetry, vol. 9, no. 20, pp. 3667–3675, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lu, X. Xu, C. Wang, J. He, Y. Hu, and H. Hu, “Synthesis of chiral ligands derived from the Betti base and their use in the enantioselective addition of diethylzinc to aromatic aldehydes,” Tetrahedron Letters, vol. 43, no. 46, pp. 8367–8369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. R. Shaterian, H. Yarahmadi, and M. Ghashang, “An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like' molecules for biological screening,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 2, pp. 788–792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. McGettigan and D. Henry, “Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2,” Journal of the American Medical Association, vol. 296, no. 13, pp. 1633–1644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Robert, “Antisecretory, antiulcer, cytoprotective and diarrheogenic properties of prostaglandins,” Advances in Prostaglandin and Thromboxane Research, vol. 2, pp. 507–520, 1976. View at Google Scholar · View at Scopus
  8. R. G. Kurumbail, A. M. Stevens, J. K. Gierse et al., “Structural basis for selective inhibition of cyciooxygenase-2 by anti-inflammatory agents,” Nature, vol. 384, no. 6610, pp. 644–648, 1996. View at Google Scholar · View at Scopus
  9. H. Tapiero, G. Nguyen Ba, P. Couvreur, and K. D. Tew, “Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies,” Biomedicine and Pharmacotherapy, vol. 56, no. 5, pp. 215–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. G. Dharmasiri, J. R. A. C. Jayakody, G. Galhena, S. S. P. Liyanage, and W. D. Ratnasooriya, “Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo,” Journal of Ethnopharmacology, vol. 87, no. 2-3, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Burdulene, A. Palaima, and Z. Stumbryavichyute, “Synthesis and antiinflammatory activity of 4-aminoantipyrine derivatives of succinamides,” Pharmaceutical Chemistry Journal, vol. 33, no. 4, pp. 191–193, 1999. View at Google Scholar · View at Scopus
  12. G. Turan-Zitouni, M. Sivaci, F. S. Kiliç, and K. Erol, “Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity,” European Journal of Medicinal Chemistry, vol. 36, no. 7-8, pp. 685–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Alama, J. H. Choib, and D. U. Lee, “Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity,” Bioorganic Medicinal Chemistry, vol. 20, pp. 4103–4108, 2012. View at Google Scholar
  14. M. Himaja, K. Rai, K. V. Anish, M. V. Ramana, and A. A. Karigar, “Synthesis and evaluation of anthelmintic and insecticidal activities of 4-amino-antipyrine derivatives of amino acids and peptides,” Journal of Pharmaceutical and Scientific Innovation, vol. 1, pp. 67–70, 2012. View at Google Scholar
  15. S. Sigroha, B. Narasimhan, P. Kumar et al., “Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones,” Medicinal Chemistry Research, vol. 21, pp. 3863–3875, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. K. Vaghasiya, R. Nair, M. Soni, S. Baluja, and S. Chanda, “Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine,” Journal of the Serbian Chemical Society, vol. 69, no. 12, pp. 991–998, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Wada and H. Suzuki, “Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions,” Tetrahedron Letters, vol. 44, no. 2, pp. 399–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Mohanram and J. Meshram, “Evaluation of in vivo anti-inflammatory and analgesic activities of novel derivatives of Ugi-4CR,” Mini-Reviews in Medicinal Chemistry, vol. 13, pp. 1508–1515, 2013. View at Google Scholar
  19. I. Mohanram, J. Meshram, A. Shaikh, and B. Kandpal, “Microwave-assisted one-pot synthesis of bioactive Ugi-4CR using fluorite as benign and heterogeneous catalyst,” Synthetic Communications, vol. 43, pp. 3322–3328, 2013. View at Google Scholar
  20. C. A. Winter, E. A. Risley, and G. W. Nuss, “Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs,” Proceedings of the Society for Experimental Biology and Medicine, vol. 111, pp. 544–547, 1962. View at Google Scholar · View at Scopus
  21. K. R. Bhatt, R. K. Mehra, and P. N. Shrivastava, “A simple method for recording antiinflammatory effects on rat paw oedema,” Indian Journal of Physiology and Pharmacology, vol. 21, no. 4, pp. 399–400, 1977. View at Google Scholar · View at Scopus
  22. A. A. Gbolade and A. A. Adeyemi, “Anthelmintic activities of three medicinal plants from Nigeria,” Fitoterapia, vol. 79, no. 3, pp. 223–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. http://www.molinspiration.com/.
  24. P. Ertl, B. Rohde, and P. Selzer, “Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties,” Journal of Medicinal Chemistry, vol. 43, no. 20, pp. 3714–3717, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. C. W. Chang, R. F. Spanjersberg, J. K. Von Frijtag Drabbe Künzel et al., “2,4,6-Trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists,” Journal of Medicinal Chemistry, vol. 47, no. 26, pp. 6529–6540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Clark, “Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption,” Journal of Pharmaceutical Sciences, vol. 88, no. 8, pp. 807–814, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1-3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus