Table of Contents
ISRN Mechanical Engineering
Volume 2014 (2014), Article ID 681910, 15 pages
http://dx.doi.org/10.1155/2014/681910
Research Article

Springback of Friction Stir Welded Sheets Made of Aluminium Grades during V-Bending: An Experimental Study

Department of Mechanical Engineering, IIT Guwahati, Guwahati, Assam 781039, India

Received 12 November 2013; Accepted 13 February 2014; Published 18 March 2014

Academic Editors: A. Combescure, X. Yang, and G. Zhao

Copyright © 2014 B. Durga Rao and R. Ganesh Narayanan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering R: Reports, vol. 50, no. 1-2, pp. 1–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. L. Semiatin, “Bending of sheet metals,” in ASM Handbook on Metal Working: Sheet Forming 14B, pp. 295–305, ASM International, Materials Park, Ohio, USA, 2006. View at Google Scholar
  3. Y. H. Moon, S. S. Kang, J. R. Cho, and T. G. Kim, “Effect of tool temperature on the reduction of the springback of aluminum sheets,” Journal of Materials Processing Technology, vol. 132, no. 1–3, pp. 365–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S.-W. Lee, “A study on the bi-directional springback of sheet metal stamping,” Journal of Materials Processing Technology, vol. 167, no. 1, pp. 33–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. L. Garcia-Romeu, J. Ciurana, and I. Ferrer, “Springback determination of sheet metals in an air bending process based on an experimental work,” Journal of Materials Processing Technology, vol. 191, no. 1–3, pp. 174–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. A. de Sousa, J. P. M. Correia, F. J. P. Simoes et al., “Unconstrained springback behavior of Al-Mg-Si sheets for different sitting times,” International Journal of Mechanical Sciences, vol. 50, no. 9, pp. 1381–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Grze, P. Y. Manach, H. Laurent, S. Thuillier, and L. F. Menezes, “Influence of the temperature on residual stresses and springback effect in an aluminium alloy,” International Journal of Mechanical Sciences, vol. 52, no. 9, pp. 1094–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Wang, R. H. Wagoner, W. D. Carden, D. K. Matlock, and F. Barlat, “Creep and anelasticity in the springback of aluminum,” International Journal of Plasticity, vol. 20, no. 12, pp. 2209–2232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Lim, M. G. Lee, J. H. Sung, J. H. Kim, and R. H. Wagoner, “Time-dependent springback of advanced high strength steels,” International Journal of Plasticity, vol. 29, no. 1, pp. 42–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yanagimoto and K. Oyamada, “Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions,” CIRP Annals—Manufacturing Technology, vol. 56, no. 1, pp. 265–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Wang, G. Huang, H. Zhang, Y. Wang, and L. Yin, “Evolution of springback and neutral layer of AZ31B magnesium alloy V-bending under warm forming conditions,” Journal of Materials Processing Technology, vol. 213, no. 6, pp. 844–850, 2013. View at Publisher · View at Google Scholar
  12. H. Y. Yu, “Variation of elastic modulus during plastic deformation and its influence on springback,” Materials and Design, vol. 30, no. 3, pp. 846–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Park, C. G. Lee, J. Kim, H. N. Han, S.-J. Kim, and K. Chung, “Improvement of formability and spring-back of AA5052-H32 sheets based on surface friction stir method,” Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 130, no. 4, pp. 0410071–04100710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kim, W. Lee, K.-H. Chung et al., “Springback evaluation of friction stir welded TWB automotive sheets,” Metals and Materials International, vol. 17, no. 1, pp. 83–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Park, C. G. Lee, H. N. Han, N. Ma, and K. Chung, “Surface friction stir method to improve formability and spring-back of AA5052-H32 sheets,” International Journal of Material Forming, vol. 1, no. 1, pp. 261–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Miles, M. W. Mahoney, and C. B. Fuller, “Prediction of bending limits in friction-stir-processed thick plate aluminum,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 37, no. 2, pp. 399–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Ramulu, S. V. Kailas, and R. G. Narayanan, “Influence of tool rotation speed and feed rate on the forming limit of friction stir welded AA6061-T6 sheets,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 227, pp. 520–541, 2013. View at Google Scholar
  18. A. P. Karafillis and M. C. Boyce, “Tooling and binder design for sheet metal forming processes compensating springback error,” International Journal of Machine Tools and Manufacture, vol. 36, no. 4, pp. 503–526, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Gan and R. H. Wagoner, “Die design method for sheet springback,” International Journal of Mechanical Sciences, vol. 46, no. 7, pp. 1097–1113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kumar, S. V. Kailas, and R. G. Narayanan, “Influence of external weld flash on the in-plane plane-strain formability of friction stir welded sheets,” Journal of Strain Analysis for Engineering Design, vol. 48, pp. 376–3385, 2013. View at Publisher · View at Google Scholar
  21. Z. Marciniak, J. L. Duncan, and S. J. Hu, Mechanics of Sheet Metal Forming, Elsevier, New Delhi, India, 1st edition, 2002.
  22. K. Mori, K. Akita, and Y. Abe, “Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press,” International Journal of Machine Tools and Manufacture, vol. 47, no. 2, pp. 321–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-M. Huang and D.-K. Leu, “Effects of process variables on V-die bending process of steel sheet,” International Journal of Mechanical Sciences, vol. 40, no. 7, pp. 631–650, 1998. View at Google Scholar · View at Scopus
  24. M. Murata, T. Kuboki, K. Takahashi, M. Goodarzi, and Y. Jin, “Effect of hardening exponent on tube bending,” Journal of Materials Processing Technology, vol. 201, no. 1–3, pp. 189–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Y. Kim, W. J. Choi, and S. Y. Park, “Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process,” International Journal of Advanced Manufacturing Technology, vol. 32, no. 5-6, pp. 445–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. J. Liu, J. C. Hou, and H. Guo, “Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy,” Materials and Design, vol. 50, pp. 872–878, 2013. View at Publisher · View at Google Scholar
  27. W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng, “Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis,” Materials Science and Engineering A, vol. 498, no. 1-2, pp. 308–313, 2008. View at Publisher · View at Google Scholar · View at Scopus