Table of Contents
ISRN Pharmacology
Volume 2014, Article ID 683508, 10 pages
http://dx.doi.org/10.1155/2014/683508
Research Article

Modulation of Arachidonic Acid Metabolism in the Rat Kidney by Sulforaphane: Implications for Regulation of Blood Pressure

1School of Pharmacy, Pacific University Oregon, 222 SE 8th Avenue, Hillsboro, OR 97123, USA
2Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
3Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA

Received 2 December 2013; Accepted 9 February 2014; Published 9 March 2014

Academic Editors: G. Biala, C. Cicala, F. J. Miranda, and B.-N. Wu

Copyright © 2014 Fawzy Elbarbry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. O'Brien, D. G. Beevers, and H. J. Marshall, ABC of Hypertension, BMJ Publishing Group, London, UK, 1995.
  2. J. M. Lasker, W. B. Chen, I. Wolf, B. P. Bloswick, P. D. Wilson, and P. K. Powell, “Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of CYP4F2 and CYP4A11,” Journal of Biological Chemistry, vol. 275, no. 6, pp. 4118–4126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sarkis and R. J. Roman, “Role of cytochrome P450 metabolites of arachidonic acid in hypertension,” Current Drug Metabolism, vol. 5, no. 3, pp. 245–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Roman, “P-450 metabolites of arachidonic acid in the control of cardiovascular function,” Physiological Reviews, vol. 82, no. 1, pp. 131–185, 2002. View at Google Scholar · View at Scopus
  5. X. Zhao and J. D. Imig, “Kidney CYP450 enzymes: biological actions beyond drug metabolism,” Current Drug Metabolism, vol. 4, no. 1, pp. 73–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Makita, J. R. Falck, and J. H. Capdevila, “Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system,” FASEB Journal, vol. 10, no. 13, pp. 1456–1463, 1996. View at Google Scholar · View at Scopus
  7. K. G. Maier and R. J. Roman, “Cytochrome P450 metabolites of arachidonic acid in the control of renal function,” Current Opinion in Nephrology and Hypertension, vol. 10, no. 1, pp. 81–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-P. Zou, J. T. Fleming, J. R. Falck et al., “20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 270, no. 1, pp. R228–R237, 1996. View at Google Scholar · View at Scopus
  9. Y.-H. Ma, D. Gebremedhin, M. L. Schwartzman et al., “20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries,” Circulation Research, vol. 72, no. 1, pp. 126–136, 1993. View at Google Scholar · View at Scopus
  10. A.-P. Zou, J. D. Imig, M. Kaldunski, P. R. O. De Montellano, Z. Sui, and R. J. Roman, “Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow,” The American Journal of Physiology—Renal Fluid and Electrolyte Physiology, vol. 266, no. 2, pp. F275–F282, 1994. View at Google Scholar · View at Scopus
  11. C.-L. M. Cooke and S. T. Davidge, “Peroxynitrite increases iNOS through NF-κB and decreases prostacyclin synthase in endothelial cells,” The American Journal of Physiology—Cell Physiology, vol. 282, no. 2, pp. C395–C402, 2002. View at Google Scholar · View at Scopus
  12. O. Ito, M. Alonso-Galicia, K. A. Hopp, and R. J. Roman, “Localization of cytochrome P-450 4A isoforms along the rat nephron,” The American Journal of Physiology—Renal Physiology, vol. 274, no. 2, pp. F395–F404, 1998. View at Google Scholar · View at Scopus
  13. D. Sacerdoti, B. Escalante, N. G. Abraham, J. C. McGiff, R. D. Levere, and M. L. Schwartzman, “Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats,” Science, vol. 243, no. 4889, pp. 388–390, 1989. View at Google Scholar · View at Scopus
  14. P. Su, K. M. Kaushal, and D. L. Kroetz, “Inhibition of renal arachidonic acid ω-hydroxylase activity with ABT reduces blood pressure in the SHR,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 275, no. 2, pp. R426–R438, 1998. View at Google Scholar · View at Scopus
  15. W. B. Campbell and J. R. Falck, “Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors,” Hypertension, vol. 49, no. 3, pp. 590–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Makita, K. Takahashi, A. Karara, H. R. Jacobson, J. R. Falck, and J. H. Capdevila, “Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2414–2420, 1994. View at Google Scholar · View at Scopus
  17. D. C. Zeldin, C. R. Moomaw, N. Jesse et al., “Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway,” Archives of Biochemistry and Biophysics, vol. 330, no. 1, pp. 87–96, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Yu, L. M. Huse, P. Adler et al., “Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney,” Molecular Pharmacology, vol. 57, no. 5, pp. 1011–1020, 2000. View at Google Scholar · View at Scopus
  19. V. R. Holla, K. Makita, P. G. Zaphiropoulos, and J. H. Capdevila, “The kidney cytochrome P-450 2C23 arachidonic acid epoxygenase is upregulated during dietary salt loading,” Journal of Clinical Investigation, vol. 104, no. 6, pp. 751–760, 1999. View at Google Scholar · View at Scopus
  20. S. I. Pomposiello, J. Quilley, M. A. Carroll, J. R. Falck, and J. C. McGiff, “5,6-Epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR,” Hypertension, vol. 42, no. 4, pp. 548–554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. L. W. Wattenberg, “Effects of dietary constituents on the metabolism of chemical carcinogens,” Cancer Research, vol. 35, no. 11, part 2, pp. 3326–3331, 1975. View at Google Scholar · View at Scopus
  22. H. J. Prochaska, M. J. De Long, and P. Talalay, “On the mechanisms of induction of cancer-protective enzymes: a unifying proposal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 23, pp. 8232–8236, 1985. View at Google Scholar · View at Scopus
  23. J. W. Fahey, Y. Zhang, and P. Talalay, “Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10367–10372, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wu, M. H. N. Ashraf, M. Facci et al., “Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 18, pp. 7094–7099, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Park and J. M. Pezzuto, “Botanicals in cancer chemoprevention,” Cancer and Metastasis Reviews, vol. 21, no. 3-4, pp. 231–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. G. V. K. Senanayake, A. Banigesh, L. Wu, P. Lee, and B. H. J. Juurlink, “The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats,” The American Journal of Hypertension, vol. 25, no. 2, pp. 229–235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. H. Noyan-Ashraf, L. Wu, R. Wang, and B. H. J. Juurlink, “Dietary approaches to positively influence fetal determinants of adult health,” The FASEB Journal, vol. 20, no. 2, pp. 371–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Juge, R. F. Mithen, and M. Traka, “Molecular basis for chemoprevention by sulforaphane: a comprehensive review,” Cellular and Molecular Life Sciences, vol. 64, no. 9, pp. 1105–1127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Vermehren-Schmaedick, V. K. Jenkins, H. Y. Hsieh et al., “Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats,” Journal of Neuroscience Research, vol. 91, no. 2, pp. 220–229, 2013. View at Publisher · View at Google Scholar
  30. F. A. Elbarbry, P. J. McNamara, and J. Alcorn, “Ontogeny of hepatic CYP1A2 and CYP2E1 expression in rat,” Journal of Biochemical and Molecular Toxicology, vol. 21, no. 1, pp. 41–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  32. P. K. Powell, I. Wolf, R. Jin, and J. M. Lasker, “Metabolism of arachidonic acid to 20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 3, pp. 1327–1336, 1998. View at Google Scholar · View at Scopus
  33. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  34. J. W. Nelson, R. M. Subrahmanyan, S. A. Summers, X. Xiao, and N. J. Alkayed, “Soluble epoxide hydrolase dimerization is required for hydrolase activity,” The Journal of Biological Chemistry, vol. 288, no. 11, pp. 7697–7703, 2013. View at Publisher · View at Google Scholar
  35. C. Gerhauser, “Epigenetic impact of dietary isothiocyanates in cancer chemoprevention,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 16, no. 4, pp. 405–410, 2013. View at Publisher · View at Google Scholar
  36. B. H. J. Juurlink, “Therapeutic potential of dietary phase 2 enzyme inducers in ameliorating diseases that have an underlying inflammatory component,” Canadian Journal of Physiology and Pharmacology, vol. 79, no. 3, pp. 266–282, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Marchioli, “Dietary supplementation with N-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial,” The Lancet, vol. 354, no. 9177, pp. 447–455, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Palumbo, F. Avanzini, C. Alli et al., “Effects of Vitamin E on clinic and ambulatory blood pressure in treated hypertensive patients,” The American Journal of Hypertension, vol. 13, no. 5, pp. 564–567, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Yusuf, G. Dagenais, J. Pogue, J. Bosch, and P. Sleight, “Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators,” The New England Journal of Medicine, vol. 342, no. 3, pp. 154–160, 2000. View at Publisher · View at Google Scholar
  40. M. D. Witham, M. A. Nadir, and A. D. Struthers, “Effect of vitamin D on blood pressure: a systematic review and meta-analysis,” Journal of Hypertension, vol. 27, no. 10, pp. 1948–1954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Riedl, A. Saxon, and D. Diaz-Sanchez, “Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway,” Clinical Immunology, vol. 130, no. 3, pp. 244–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Vermeulen, I. W. A. A. Klöpping-Ketelaars, R. Van Den Berg, and W. H. J. Vaes, “Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10505–10509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. D. Intengan and E. L. Schiffrin, “Disparate effects of carvedilol versus metoprolol treatment of stroke-prone spontaneously hypertensive rats on endothelial function of resistance arteries,” Journal of Cardiovascular Pharmacology, vol. 35, no. 5, pp. 763–768, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. K. M. Dunn, M. Renic, A. K. Flasch, D. R. Harder, J. Falck, and R. J. Roman, “Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 295, no. 6, pp. H2455–H2465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. D. Imig, “Epoxides and soluble epoxide hydrolase in cardiovascular physiology,” Physiological Reviews, vol. 92, no. 1, pp. 101–130, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. P. Koeners, S. Wesseling, A. Ulu et al., “Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 300, no. 4, pp. E691–E698, 2011. View at Publisher · View at Google Scholar · View at Scopus