Table of Contents
ISRN Agronomy
Volume 2014, Article ID 727123, 14 pages
http://dx.doi.org/10.1155/2014/727123
Research Article

Characterization of the Wine Grape Thermohydrological Conditions in the Tropical Brazilian Growing Region: Long-Term and Future Assessments

1Embrapa, 13070-115 Campinas, SP, Brazil
2Embrapa, 95700-000 Bento Gonçalves, RS, Brazil
3São Paulo State University, 15385-000 Ilha Solteira, SP, Brazil

Received 12 November 2013; Accepted 22 December 2013; Published 10 February 2014

Academic Editors: J. Hatfield, N. Hulugalle, and L. Mateos

Copyright © 2014 Antônio Heriberto de Castro Teixeira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Panel on Climate Change, “Climate change 2001: the physical scientific basis,” Working Group 1, IPCC Third Assessment Report, Cambridge University Press, Cambridge, UK, 2011. View at Google Scholar
  2. International Panel on Climate Change, “Climate change 2007: the physical scientific basis. Summary for policymakers,” Contribution of Working Groups I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  3. G. V. Jones, M. A. White, O. R. Cooper, and K. Storchmann, “Climate change and global wine quality,” Climatic Change, vol. 73, no. 3, pp. 319–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Gladstones, “Climate and Australian viticulture,” in Viticulture, Volume 1: Resources, P. Dry and B. G. Coomb, Eds., pp. 90–118, Winetitles, Adelaide, Australia, 2004. View at Google Scholar
  5. A. J. Winkler, J. A. Cook, W. M. Kliewer, and L. A. Lider, General Viticulture, University of California Press, Berkeley, Calif, USA, 1974.
  6. A. Costacurta and G. Roselli, “Critères climatiques et édaphiques pour l’établissement des vignobles,” Le Bulletin de l’Organisation Internationale de la Vigne et du Vin, vol. 53, pp. 783–786, 1980. View at Google Scholar
  7. P. Huglin and C. Schneider, Biologie et écologie de la vigne, Lavoisier, Paris, France, 1998.
  8. C. R. Hale and M. S. Buttrose, “Effect of temperature on ontogeny of berries of Vitis vinifera L. cv. Cabernet Sauvignon,” Journal of the American Society for Horticultural Science, vol. 99, pp. 390–394, 1974. View at Google Scholar
  9. J. M. Tarara, J. Lee, S. E. Spayd, and C. F. Scagel, “Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes,” American Journal of Enology and Viticulture, vol. 59, no. 3, pp. 235–247, 2008. View at Google Scholar · View at Scopus
  10. R. M. de Orduña, “Climate change associated effects on grape and wine quality and production,” Food Research International, vol. 43, no. 7, pp. 1844–1845, 2010. View at Google Scholar · View at Scopus
  11. L. B. Webb, P. H. Whetton, and E. W. R. Barlow, “Climate change impacts on Australian viticulture,” in Proceedings of the 13th Australian Wine Industry Technical Conference (AWITC '08), R. Blair, P. Williams, and P. Sakkie, Eds., pp. 99–105, Australian Wine Industry Technical Conference, Urrbrae, Australia, 2008. View at Google Scholar
  12. M. A. White, N. S. Diffenbaugh, G. V. Jones, J. S. Pal, and F. Giorgi, “Extreme heat reduces and shifts United States premium wine production in the 21st century,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11217–11222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Ganichot, “Evolution de la date des vendanges dans les Côtes du Rhône méridionales,” in Actes des 6émes rencontres rhodaniennes, pp. 38–41, Institut Rhodanien, Orange, France, 2002. View at Google Scholar
  14. C. V. Jones, “Climate change: observations, projections, and general implications for viticulture and wine production,” in Economics Department Working Paper No. 7, E. Essick, P. Griffin, B. Keefer, S. Miller, and K. Storckmann, Eds., pp. 1–7, Whitman College, Washington, DC, United States, 2007. View at Google Scholar
  15. L. R. Clark, R. W. Fitzpatrick, R. S. Murray, and M. G. McCarthy, “Vineyard soil degradation following irrigation with saline groundwater for twenty years,” in Proceedings of the 17th World Congress of Soil Science, no. 33, pp. 1115 CD ROM, International Union of Soil Science, Bangkok, Thailand, 2002. View at Google Scholar
  16. A. L. Richards, J. L. Hutson, and M. G. McCarthy, “Monitoring and modeling transient rootzone salinity in drip irrigated viticulture,” in Proceedings of the 13th Australian Wine Industry Technical Conference (AWITC '08), R. Blair, P. Williams, and P. Sakkie, Eds., pp. 212–217, Australian Wine Industry Technical Conference, Urbrae, Australia, 2008. View at Google Scholar
  17. R. R. Walker, D. H. Blackmore, P. R. Clingeleffer et al., “Salinity effects on vines and wines,” Le Bulletin de l’Organisation Internationale de la Vigne et du Vin, vol. 76, pp. 200–227, 2003. View at Google Scholar
  18. M. Keller, “Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists,” Australian Journal of Grape and Wine Research, vol. 16, no. 1, pp. 56–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. H. C. Teixeira, Water Productivity Assessments from Field to Large Scale: A Case Study in the Brazilian Semi-Arid Region, LAP Lambert Academic Publishing, Saarbrücken, Germany, 2009.
  20. L. B. Webb, P. H. Whetton, and E. W. R. Barlow, “Modelled impact of future climate change on the phenology of winegrapes in Australia,” Australian Journal of Grape and Wine Research, vol. 13, no. 3, pp. 165–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Anderson, C. Findlay, S. Fuentes, and S. Tyerman, Garmaute Climate Change Review: Viticulture, Wine and Climate Change, University of Adelaide, Adelaide, Australia, 2008.
  22. D. I. Jackson and N. J. Cherry, “Prediction of a district’s grape-ripening capacity, using a latitude-temperature index (LTI),” American Journal of Enology and Viticulture, vol. 1, pp. 19–28, 1988. View at Google Scholar
  23. L. B. Webb, The impact of projected greenhouse gas-induced climate change on the Australian wine industry [Ph.D. thesis], School of Agriculture and Food Systems, University of Melbourne, Victoria, Australia, 2006.
  24. A. H. C. Teixeira and L. H. Bassoi, “Crop water productivity in semi-arid regions: from field to large scales,” Annals of Arid Zone, vol. 48, pp. 1–13, 2009. View at Google Scholar
  25. N. Nakicenovic, J. Alcamo, G. Davis et al., IPCC Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, UK, 2000.
  26. V. Bonnardot, O. Planchon, V. A. Carey, and S. Cautenet, “Diurnal wind, relative humidity and temperature variation in the Stellenbosch-Groot Drakenstein wine producing area,” South African Journal for Enology and Viticulture, vol. 23, pp. 62–71, 2002. View at Google Scholar
  27. J. Tonietto and A. Carbonneau, “A multicriteria climatic classification system for grape-growing regions worldwide,” Agricultural and Forest Meteorology, vol. 124, no. 1-2, pp. 81–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Hormazábal, G. Lyon, and A. Carbonneau, “Variabilité et limite du macroclimat viticole méditerranéen des Départements de l’Aude, de l’Hérault et du Gard, dans le Midi de la France,” Progrès Agricole et Viticole, vol. 119, pp. 102–110, 2002. View at Google Scholar
  29. D. Blanco-Ward, J. M. García Queijeiro, and G. V. Jones, “Spatial climate variability and viticulture in the Miño River Valley of Spain,” Vitis, vol. 46, no. 2, pp. 63–70, 2007. View at Google Scholar · View at Scopus
  30. M. Ferrer, R. Pedocchi, M. Michelazzo, G. Gonzalez-Neves, and A. Carbonneau, “Delimitación y descripción de regiones vitícolas del Uruguay en base al método de clasificación climática multicriterio utilizando índices bioclimáticos adaptados a las condiciones del cultivo,” Agrociencia, vol. 11, pp. 47–56, 2007. View at Google Scholar
  31. C. Montes, J. F. Perez-Quezada, A. Peña-Neira, and J. Tonietto, “Climatic potential for viticulture in Central Chile,” Australian Journal of Grape and Wine Research, vol. 18, no. 1, pp. 20–28, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. E. P. Cavalcanti and V. P. R. Silva, “Programa computacional para a estimativa da temperatura do ar para a região Nordeste do Brasil,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 10, pp. 140–147, 2006. View at Google Scholar
  33. C. W. Thornthwate, “An approach toward a rational classification of climate,” Geographical Review, vol. 38, pp. 55–94, 1948. View at Google Scholar
  34. R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop evapotranspiration: guidelines for computing crop water requirements,” FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy, 1998. View at Google Scholar
  35. A. H. D. C. Teixeira, W. G. M. Bastiaanssen, and L. H. Bassoi, “Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil,” Agricultural Water Management, vol. 94, pp. 31–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. International Panel on Climate Change, “IPCC SRES climate scenarios (the IPCC Data Distribution Centre),” 2006, http://www.ipcc-data.org/sres/gcm_data.html.
  37. J. A. Marengo, I. F. A. Calvalcanti, P. Satyamurty et al., “Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM,” Climate Dynamics, vol. 21, no. 5-6, pp. 459–475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. L. E. Williams, C. J. Phene, D. W. Grimes, and T. J. Trout, “Water use of mature Thompson Seedless grapevines in California,” Irrigation Science, vol. 22, no. 1, pp. 11–18, 2003. View at Google Scholar · View at Scopus
  39. I. A. M. Yunusa, R. R. Walker, and P. Lu, “Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia,” Agricultural and Forest Meteorology, vol. 127, no. 1-2, pp. 93–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Rana, N. Katerji, M. Introna, and A. Hammami, “Microclimate and plant water relationship of the “overhead” table grape vineyard managed with three different covering techniques,” Scientia Horticulturae, vol. 102, no. 1, pp. 105–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. L. E. Williams and J. E. Ayars, “Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy,” Agricultural and Forest Meteorology, vol. 132, no. 3-4, pp. 201–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Ortega-Farias, M. Carrasco, A. Olioso, C. Acevedo, and C. Poblete, “Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model,” Irrigation Science, vol. 25, no. 2, pp. 161–170, 2007. View at Publisher · View at Google Scholar · View at Scopus