Table of Contents
ISRN Cardiology
Volume 2014 (2014), Article ID 739526, 6 pages
http://dx.doi.org/10.1155/2014/739526
Research Article

Mitochondrial Morphofunctional Alterations in Smooth Muscle Cells of Aorta in Rats

1Instituto de Investigación en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
2Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
3Becaria Secyt, Universidad Nacional de Córdoba, Córdoba, Argentina
4Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de La Rioja, La Rioja, Argentina
5Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
6Los Médanos 3155, Alto Verde, 5009 Córdoba, Argentina

Received 20 November 2013; Accepted 19 December 2013; Published 6 February 2014

Academic Editors: P. E. Puddu and A. Stephanou

Copyright © 2014 María del Carmen Baez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Green, N. Foiles, C. Chan, P. J. Schreiner, and K. Liu, “Elevated fibrinogen levels and subsequent subclinical atherosclerosis: the CARDIA Study,” Atherosclerosis, vol. 202, no. 2, pp. 623–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Guo, J. Liu, C. Wang, N. Liu, and P. Lu, “Fibrinogen, fibrin, and FDP induce C-reactive protein generation in rat vascular smooth muscle cells: pro-inflammatory effect on atherosclerosis,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 942–946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Stefanadi, D. Tousoulis, N. Papageorgiou, A. Briasoulis, and C. Stefanadis, “Inflammatory biomarkers predicting events in atherosclerosis,” Current Medicinal Chemistry, vol. 17, no. 16, pp. 1690–1707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Lönna, J. M. Dennisa, and R. Stocker, “Actions of “antioxidants” in the protection against atherosclerosis,” Free Radical Biology and Medicine, vol. 53, no. 4, pp. 863–884, 2012. View at Google Scholar
  5. P. Puddu, G. M. Puddu, E. Cravero, S. de Pascalis, and A. Muscari, “The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis,” Journal of Biomedical Science, vol. 16, no. 1, article 112, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Stocker and J. F. Keaney Jr., “Role of oxidative modifications in atherosclerosis,” Physiological Reviews, vol. 84, no. 4, pp. 1381–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. V. M. Victor, M. Rocha, E. Solá, C. Bañuls, K. Garcia-Malpartida, and A. Hernández-Mijares, “Oxidative stress, endotelial dysfunction and aterosclerosis,” Current Pharmaceutical Design, vol. 15, no. 26, pp. 2988–3002, 2009. View at Google Scholar
  8. M. Moya, V. Campana, A. Gavotto, L. Spitale, J. Simes, and J. Palma, “Simvastatin: pharmacological response in experimental hyperfibrinogenaemias,” Acta Cardiologica, vol. 60, no. 2, pp. 159–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Baez, M. Tarán, V. Campana et al., “Marcadores de estrés oxidativo en aterogénesis inducida por hyperfibrinogenemia,” Archivos de Cardiología de México, vol. 79, no. 2, pp. 85–90, 2009. View at Google Scholar
  10. S. R. Thomas, P. K. Witting, and G. R. Drummond, “Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 10, no. 10, pp. 1713–1765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hulsmans, E. van Dooren, and P. Holvoet, “Mitochondrial reactive oxygen species and risk of atherosclerosis,” Current Atherosclerosis Reports, vol. 14, no. 3, pp. 264–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Shiva, J.-Y. Oh, A. L. Landar et al., “Nitroxia: the pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway,” Free Radical Biology and Medicine, vol. 38, no. 3, pp. 297–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. C. Brown, “Nitric oxide and mitochondria,” Frontiers in Bioscience, vol. 12, no. 3, pp. 1024–1033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. V. M. Victor, N. Apostolova, R. Herance, A. Hernandez-Mijares, and M. Rocha, “Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy,” Current Medicinal Chemistry, vol. 16, no. 35, pp. 4654–4667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. J. Pashkow, “Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention?” International Journal of Inflammation, vol. 2001, Article ID 514623, 9 pages, 2001. View at Publisher · View at Google Scholar
  16. J. Tinkel, H. Hassanain, and S. J. Khouri, “Cardiovascular antioxidant therapy: a review of supplements, pharmacotherapies, and mechanisms,” Cardiology in Review, vol. 20, no. 2, pp. 77–83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Siekmeier, C. Steffen, and W. März, “Can antioxidants prevent atherosclerosis?” Bundesgesundheitsblatt—Gesundheitsforschung—Gesundheitsschutz, vol. 49, no. 10, pp. 1034–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. C. Berk, “Novel approaches to treat oxidative stress and cardiovascular diseases,” Transactions of the American Clinical and Climatological Association, vol. 118, pp. 209–214, 2007. View at Google Scholar · View at Scopus
  19. J. A. Palma, J. Enders, and P. P. de Oliva, “Effects of epinephrine on plasma fibrinogen level in rats submitted to tissue injury,” Experientia, vol. 37, no. 7, pp. 780–782, 1981. View at Google Scholar · View at Scopus
  20. M. J. Karnovsky and R. C. Graham, “A formaldehide-glutaraldehide fixative of high osmolarity by MET,” The Journal of Cell Biology, vol. 27, pp. 137–138, 1965. View at Google Scholar
  21. G. Vyatkina, V. Bhatia, A. Gerstner, J. Papaconstantinou, and N. Garg, “Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development,” Biochimica et Biophysica Acta, vol. 1689, no. 2, pp. 162–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Bradford, “A rapid and sensitive method for quantitation of microgramo quantities of protein utilizing the principle of proteína-DNA binding,” Analytical Biochemistry, vol. 72, pp. 248–254, 1976. View at Google Scholar
  23. I. A. Trounce, Y. L. Kim, A. S. Jun, and D. C. Wallace, “Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines,” Methods in Enzymology, vol. 264, pp. 484–509, 1996. View at Google Scholar · View at Scopus
  24. D. Jarreta, J. Orús, A. Barrientos et al., “Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy,” Cardiovascular Research, vol. 45, no. 4, pp. 860–865, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Seppet, M. Gruno, A. Peetsalu et al., “Mitochondria and energetic depression in cell pathophysiology,” International Journal of Molecular Sciences, vol. 10, no. 5, pp. 2252–2303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Dos Santos, A. J. Kowaltowski, M. N. Laclau et al., “Mechanisms by which opening the mitochondrial ATP-sensitive K+ channel protects the ischemic heart,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 283, no. 1, pp. H284–H295, 2002. View at Google Scholar · View at Scopus
  27. A. J. Kowaltowski, S. Seetharaman, P. Paucek, and K. D. Garlid, “Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 280, no. 2, pp. H649–H657, 2001. View at Google Scholar · View at Scopus
  28. K. D. Garlid, P. E. Puddu, P. Pasdois et al., “Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 291, no. 1, pp. H152–H160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Jui-Chih, K. Shou-Jen, L. Wei-Ting, and L. Chin-San, “Regulatory role of mitochondria in oxidative stress and atherosclerosis,” The World Journal of Cardiology, vol. 2, no. 6, pp. 150–159, 2010. View at Google Scholar
  30. U. Singh and S. Devaraj, “Vitamin E: inflammation and atherosclerosis,” Vitamins and Hormones, vol. 76, pp. 519–549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. Harrison, M. Pompilius, K. E. Pinkerton, and S. W. Ballinger, “Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine induced oxidant production,” Environmental Health Perspectives, vol. 119, no. 5, pp. 676–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Parone, S. da Druz, D. Tondera et al., “Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA,” PLoS ONE, vol. 3, no. 9, Article ID e3257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Castro, J. P. Eiserich, S. Sweeney, R. Radi, and B. A. Freeman, “Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration,” Archives of Biochemistry and Biophysics, vol. 421, no. 1, pp. 99–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. F. Stowe and A. K. S. Camara, “Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1373–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Cortés-Rojo and A. R. Rodríguez-Orozco, “Importance of oxidative damage on the electron transport chain for the rational use of mitochondria-targeted antioxidants,” Mini-Reviews in Medicinal Chemistry, vol. 11, no. 7, pp. 625–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. C. Montezano and R. M. Touyz, “Reactive oxygen species and endothelial function—role of nitric oxide synthase uncoupling and nox family nicotinamide adenine dinucleotide phosphate oxidases,” Basic and Clinical Pharmacology and Toxicology, vol. 110, no. 1, pp. 87–94, 2012. View at Publisher · View at Google Scholar · View at Scopus