Table of Contents
ISRN Pharmacology
Volume 2014 (2014), Article ID 751824, 9 pages
http://dx.doi.org/10.1155/2014/751824
Research Article

Ixora coccinea Enhances Cutaneous Wound Healing by Upregulating the Expression of Collagen and Basic Fibroblast Growth Factor

1Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam 784001, India
2Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India

Received 4 September 2013; Accepted 5 December 2013; Published 29 January 2014

Academic Editors: R. Couture, S. Cuzzocrea, A. Fernandez-Guasti, and B.-N. Wu

Copyright © 2014 Aadesh Upadhyay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Houghton, P. J. Hylands, A. Y. Mensah, A. Hensel, and A. M. Deters, “In vitro tests and ethnopharmacological investigations: wound healing as an example,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 100–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Kumar, M. Vijayakumar, R. Govindarajan, and P. Pushpangadan, “Ethnopharmacological approaches to wound healing-exploring medicinal plants of India,” Journal of Ethnopharmacology, vol. 114, no. 2, pp. 103–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Thakur, N. Jain, R. Pathak, and S. S. Sandhu, “Practices in wound healing studies of plants,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 438056, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Adetutu, W. A. Morgan, and O. Corcoran, “Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria,” Journal of Ethnopharmacology, vol. 133, no. 1, pp. 116–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Annan and P. J. Houghton, “Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana,” Journal of Ethnopharmacology, vol. 119, no. 1, pp. 141–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. B. S. Nayak, A. L. Udupa, and S. L. Udupa, “Effect of Ixora coccinea flowers on dead space wound healing in rats,” Fitoterapia, vol. 70, no. 3, pp. 233–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. W. D. Ratnasooriya, S. A. Deraniyagala, G. Galhena, S. S. P. Liyanage, S. D. N. K. Bathige, and J. R. A. C. Jayakody, “Anti-inflammatory activity of the aqueous leaf extract of Ixora coccinea,” Pharmaceutical Biology, vol. 43, no. 2, pp. 147–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Selvaraj, B. Lakshmanan, P. M. Mazumder, M. Karuppasamy, S. S. Jena, and A. K. Pattnaik, “Evaluation of wound healing and antimicrobial potentials of Ixora coccinea root extract,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 12, pp. 959–963, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Latha and K. R. Panikkar, “Cytotoxic and antitumour principles from Ixora caccinea flowers,” Cancer Letters, vol. 130, no. 1-2, pp. 197–202, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Annapurna, P. V. S. Amarnath, D. A. Kumar, S. V. Ramakrishna, and K. V. Raghavan, “Antimicrobial activity of Ixora caccinea leaves,” Fitoterapia, vol. 74, no. 3, pp. 291–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. O. Idowu, A. O. Ogundaini, A. O. Salau, E. M. Obuotor, M. Bezabih, and B. M. Abegaz, “Doubly linked, A-type proanthocyanidin trimer and other constituents of Ixora caccinea leaves and their antioxidant and antibacterial properties,” Phytochemistry, vol. 71, no. 17-18, pp. 2092–2098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Torey, S. Sasidharan, L. Y. Latha, S. Sudhakaran, and S. Ramanathan, “Antioxidant activity and total phenolic content of methanol extracts of Ixora caccinea,” Pharmaceutical Biology, vol. 48, no. 10, pp. 1119–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Y. Latha, I. Darah, K. Jain, and S. Sasidharan, “Pharmacological screening of methanolic extract of Ixora species,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 2, pp. 149–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. K. R. Khandelwal, Practical Pharmacognosy, Techniques & Experiments, Nirali Prakashan, 11th edition, 2004.
  15. E. A. Hayouni, K. Miled, S. Boubaker et al., “Hydroalcoholic extract based-ointment from Punica granatum L. peels with enhanced in vivo healing potential on dermal wounds,” Phytomedicine, vol. 18, no. 11, pp. 976–984, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. I. M. C. Brighente, M. Dias, L. G. Verdi, and M. G. Pizzolatti, “Antioxidant activity and total phenolic content of some Brazilian species,” Pharmaceutical Biology, vol. 45, no. 2, pp. 156–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Süntar, E. K. Akkol, F. S. Enol, H. Keles, and I. E. Orhan, “Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models,” Journal of Ethnopharmacology, vol. 135, no. 1, pp. 71–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. X. H. Wang and J. T. Dai, “A comparative study on antioxidant activity of water and ethanol extracts of ten Chinese herbs,” Journal of Medicinal Plants Research, vol. 6, no. 11, pp. 2210–2215, 2012. View at Google Scholar
  19. S. Maurya and D. Singh, “Quantitative analysis of total phenolic content in Adhatoda vasica nees extracts,” International Journal of PharmTech Research, vol. 2, no. 4, pp. 2403–2406, 2010. View at Google Scholar · View at Scopus
  20. OECD guideline for testing of chemicals-402, Acute Dermal Toxicity, 1987.
  21. A. Upadhyay, P. Chattopadhyay, D. Goyary, P. M. Mazumder, and V. Veer, “Eleutherine indica L. accelerates in vivo cutaneous wound healing by stimulating Smad-mediated collagen production,” Journal of Ethnopharmacology, vol. 146, no. 2, pp. 490–494, 2013. View at Google Scholar
  22. P. G. Bowler, B. I. Duerden, and D. G. Armstrong, “Wound microbiology and associated approaches to wound management,” Clinical Microbiology Reviews, vol. 14, no. 2, pp. 244–269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Schäfer and S. Werner, “Oxidative stress in normal and impaired wound repair,” Pharmacological Research, vol. 58, no. 2, pp. 165–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Shukla, A. M. Rasik, and G. K. Patnaik, “Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound,” Free Radical Research, vol. 26, no. 2, pp. 93–101, 1997. View at Google Scholar · View at Scopus
  25. B. P. Mudge, C. Harris, R. R. Gilmont, B. S. Adamson, and R. S. Rees, “Role of glutathione redox dysfunction in diabetic wounds,” Wound Repair and Regeneration, vol. 10, no. 1, pp. 52–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Mimura, H. Ihn, M. Jinnin, Y. Asano, K. Yamane, and K. Tamaki, “Epidermal growth factor induces fibronectin expression in human dermal fibroblasts via protein kinase C δ signaling pathway,” The Journal of Investigative Dermatology, vol. 122, no. 6, pp. 1390–1398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Kondo and Y. Ishida, “Molecular pathology of wound healing,” Forensic Science International, vol. 203, no. 1–3, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Schiller, D. Javelaud, and A. Mauviel, “TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing,” Journal of Dermatological Science, vol. 35, no. 2, pp. 83–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Massagué and R. R. Gomis, “The logic of TGF-β signaling,” FEBS Letters, vol. 580, no. 12, pp. 2811–2820, 2006. View at Publisher · View at Google Scholar · View at Scopus