Table of Contents
ISRN Dentistry
Volume 2014 (2014), Article ID 762458, 5 pages
http://dx.doi.org/10.1155/2014/762458
Review Article

Current State of Topical Antimicrobial Therapy in Management of Early Childhood Caries

Department of Pedodontics and Preventive Dentistry, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu 600077, India

Received 26 November 2013; Accepted 9 January 2014; Published 19 February 2014

Academic Editors: H. S. Cardash and M. Tanomaru-Filho

Copyright © 2014 JayaBaarathi Jayabal and Ramakrishnan Mahesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. DenBesten and R. Berkowitz, “Early childhood caries: an overview with reference to our experience in California,” Journal of the California Dental Association, vol. 31, no. 2, pp. 139–143, 2003. View at Google Scholar · View at Scopus
  2. R. O. Mattos-Graner, Y. Li, P. W. Caufield, M. Duncan, and D. J. Smith, “Genotypic diversity of mutans streptococci in Brazilian nursery children suggests horizontal transmission,” Journal of Clinical Microbiology, vol. 39, no. 6, pp. 2313–2316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Dasanayake, P. W. Caufield, G. R. Cutter, and H. M. Stiles, “Transmission of mutans streptococci to infants following short term application of an iodine-NaF solution to mothers' dentition,” Community Dentistry and Oral Epidemiology, vol. 21, no. 3, pp. 136–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Harris, A. D. Nicoll, P. M. Adair, and C. M. Pine, “Risk factors for dental caries in young children: a systematic review of the literature,” Community Dental Health, vol. 21, no. 1, pp. 71–85, 2004. View at Google Scholar · View at Scopus
  5. Y. Kawashita, M. Kitamura, and T. Saito, “Early childhood caries,” International Journal of Dentistry, vol. 2011, Article ID 725320, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. L. Dini, R. D. Holt, and R. Bedi, “Caries and its association with infant feeding and oral health-related behaviours in 3-4-year-old Brazilian children,” Community Dentistry and Oral Epidemiology, vol. 28, no. 4, pp. 241–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Mohan, D. E. Morse, D. M. O'Sullivan, and N. Tinanoff, “The relationship between bottle usage/content, age, and number of teeth with mutans streptococci colonization in 6–24-month-old children,” Community Dentistry and Oral Epidemiology, vol. 26, no. 1, pp. 12–20, 1998. View at Google Scholar · View at Scopus
  8. J.-A. Marrs, S. Trumbley, and G. Malik, “Early childhood caries: determining the risk factors and assessing the prevention strategies for nursing intervention,” Pediatric Nursing, vol. 37, no. 1, pp. 9–15, 2011. View at Google Scholar · View at Scopus
  9. American Academy of Pediatric Dentistry and Council on Clinical Affairs, “Guideline on perinatal oralhealthcare,” 2013, www.aapd.org/media/Policies_Guidelines/G_PerinatalOralHealthCare.pdf.
  10. American Academy of Pediatric Dentistry. Clinical Affairs Committee—Infant Oral Health Subcommittee, “Guideline on infant oral health care,” Pediatric Dentistry, vol. 34, no. 5, pp. 148–152, 2012. View at Google Scholar
  11. American Academy of Pediatrics, Committee on Native American Child Health, Canadian Paediatric Society, and First Nations, Inuit and Métis Committee, “Early childhood caries in indigenous communities,” Pediatrics, vol. 127, no. 6, pp. 1190–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Assembly of First Nations and First Nations Information Governance Committee, First Nations Regional Longitudinal Health Survey (RHS) 2002/03: Results for Adults, Youth and Children Living in First Nation Communities, Assembly of First Nations, Ottawa, Canada, 2nd edition, 2007.
  13. R. Harrison, “Oral health promotion for high-risk children: case studies from British Columbia,” Journal of the Canadian Dental Association, vol. 69, no. 5, pp. 292–296, 2003. View at Google Scholar · View at Scopus
  14. V. C. Marinho, H. V. Worthington, T. Walsh, and J. E. Clarkson, “Fluoride varnishes for preventing dental caries in children and adolescents,” Cochrane Database of Systematic Reviews, vol. 7, Article ID CD002279, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. R. E. Marquis, “Antimicrobial actions of fluoride for oral bacteria,” The Canadian Journal of Microbiology, vol. 41, no. 11, pp. 955–964, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Zickert and C. G. Emilson, “Effect of fluoride-containing varnish on Streptococcus mutans in plaque and saliva,” Scandinavian Journal of Dental Research, vol. 90, no. 6, pp. 423–428, 1982. View at Google Scholar · View at Scopus
  17. E. D. Beltrán-Aguilar, J. W. Goldstein, and S. A. Lockwood, “Fluoride varnishes: a review of their clinical use, cariostatic mechanism, efficacy and safety,” Journal of the American Dental Association, vol. 131, no. 5, pp. 589–596, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Twetman, “Prevention of early childhood caries (ECC)—review of literature published 1998–2007,” The European Archives of Paediatric Dentistry, vol. 9, no. 1, pp. 12–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Ogard, L. Seppä, and G. Rølla, “Professional topical fluoride applications—clinical efficacy and mechanism of action,” Advances in Dental Research, vol. 8, no. 2, pp. 190–201, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Arends and J. Schuthof, “Fluoride content in human enamel after fluoride application and washing: an in vitro study,” Caries Research, vol. 9, no. 5, pp. 363–372, 1975. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Weintraub, F. Ramos-Gomez, B. Jue et al., “Fluoride varnish efficacy in preventing early childhood caries,” Journal of Dental Research, vol. 85, no. 2, pp. 172–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. H. Chu and E. C. Lo, “Promoting caries arrest in children with silver diamine fluoride: a review,” Oral Health & Preventive Dentistry, vol. 6, no. 4, pp. 315–321, 2008. View at Google Scholar · View at Scopus
  23. A. Rosenblatt, T. C. M. Stamford, and R. Niederman, “Silver diamine fluoride: a caries ‘silver-fluoride bullet’,” Journal of Dental Research, vol. 88, no. 2, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. B. Featherstone, “Delivery challenges for fluoride, chlorhexidine and xylitol,” BMC Oral Health, vol. 6, supplement 1, article S8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Zhang, W. H. van Palenstein Helderman, M. A. van't Hof, and G.-J. Truin, “Chlorhexidine varnish for preventing dental caries in children, adolescents and young adults: a systematic review,” European Journal of Oral Sciences, vol. 114, no. 6, pp. 449–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. K.-C. Ma, B. Y. Hikmat, K. Wycoff et al., “Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans,” Nature Medicine, vol. 4, no. 5, pp. 601–606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. van Lunsen, J. J. de Soet, K. L. Weerheijm, H. J. Groen, and J. S. J. Veerkamp, “Effects of dental treatment and single application of a 40% chlorhexidine varnish on mutans streptococci in young children under intravenous anaesthesia,” Caries Research, vol. 34, no. 3, pp. 268–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H. M. van Rijkom, G. J. Truin, and M. A. van't Hof, “A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment,” Journal of Dental Research, vol. 75, no. 2, pp. 790–795, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Koontongkaew and S. Jitpukdeebodintra, “Amphiphilic property of chlorhexidine and its toxicity against Streptococcus mutans GS-5,” The Journal of Nihon University School of Dentistry, vol. 36, no. 4, pp. 235–240, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Law and W. K. Seow, “A longitudinal study of 0.2% chlorhexidine gel for removal of mutans streptococci infection in preschool children,” Australian Dental Journal, vol. 52, no. 1, pp. 26–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Petti and H. Hausen, “Caries-preventive effect of chlorhexidine gel applications among high-risk children,” Caries Research, vol. 40, no. 6, pp. 514–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Simratvir, N. Singh, S. Chopra, and A. Thomas, “Efficacy of 10% povidone iodine in children affected with early childhood caries: an in vivo study,” The Journal of Clinical Pediatric Dentistry, vol. 34, no. 3, pp. 233–238, 2010. View at Google Scholar · View at Scopus
  33. L. Lopez, R. Berkowitz, H. Zlotnik, M. Moss, and P. Weinstein, “Topical antimicrobial therapy in the prevention of early childhood caries,” Pediatric Dentistry, vol. 21, no. 1, pp. 9–11, 1999. View at Google Scholar · View at Scopus
  34. R. J. Berkowitz, “Causes, treatment and prevention of early childhood caries: a microbiologic perspective,” Journal of the Canadian Dental Association, vol. 69, no. 5, pp. 304–307, 2003. View at Google Scholar · View at Scopus
  35. L. Lopez, R. Berkowitz, C. Spiekerman, and P. Weinstein, “Topical antimicrobial therapy in the prevention of early childhood caries: a follow-up report,” Pediatric Dentistry, vol. 24, no. 3, pp. 204–206, 2002. View at Google Scholar · View at Scopus
  36. A. Tam, M. Shemesh, U. Wormser, A. Sintov, and D. Steinberg, “Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 5, pp. 865–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Lynch and P. Milgrom, “Xylitol and dental caries: an overview for clinicians,” Journal of the California Dental Association, vol. 31, no. 3, pp. 205–209, 2003. View at Google Scholar · View at Scopus
  38. L. Zhan, J. Cheng, P. Chang et al., “Effects of xylitol wipes on cariogenic bacteria and caries in young children,” Journal of Dental Research, vol. 91, no. 7, pp. 85–90, 2012. View at Publisher · View at Google Scholar
  39. E. Söderling, P. Isokangas, K. Pienihäkkinen, and J. Tenovuo, “Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants,” Journal of Dental Research, vol. 79, no. 3, pp. 882–887, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. He, L. Chen, D. Heber, W. Shi, and Q.-Y. Lu, “Antibacterial compounds from Glycyrrhiza uralensis,” Journal of Natural Products, vol. 69, no. 1, pp. 121–124, 2006. View at Publisher · View at Google Scholar · View at Scopus