Table of Contents
ISRN Condensed Matter Physics
Volume 2014, Article ID 763401, 7 pages
http://dx.doi.org/10.1155/2014/763401
Research Article

Theoretical Investigations of Structural Phase Transitions and Magnetic, Electronic and Thermal Properties of DyNi: Under High Pressures and Temperatures

School of Studies in Physics, Jiwaji University, Gwalior 474 011, India

Received 9 September 2013; Accepted 17 December 2013; Published 4 February 2014

Academic Editors: H.-D. Yang and A. D. Zaikin

Copyright © 2014 Pooja Rana and U. P. Verma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Caoa, Z. Yua, and A. M. Russell, “The deformation behavior of DyCu ductile intermetallic compound under compression,” Materials Science and Engineering: A, vol. 528, no. 24, pp. 7173–7177, 2011. View at Publisher · View at Google Scholar
  2. N. H. Duc, “Intersublattice exchange coupling in the lanthanide-transition metal intermetallics,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr. and L. Eyring, Eds., vol. 24, chapter 163, pp. 339–398, Cryogenic Labora, Hanoi, Vietnam, 1997. View at Google Scholar
  3. Y. L. Yaropolov, A. S. Andreenko, S. A. Nikitin, S. S. Agafonov, V. P. Glazkov, and V. N. Verbetsky, “Structure and magnetic properties of RNi (R = Gd, Tb, Dy, Sm) and R6M1.67Si3 (R = Ce, Gd, Tb; M = Ni, Co) hydrides,” Journal of Alloys and Compounds, vol. 509, no. 2, pp. S830–S834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Mallik, P. L. Paulose, E. V. Sampathkumaran, S. Patil, and V. Nagarajan, “Coexistence of localized and (induced) itinerant magnetism and heat-capacity anomalies in Gd1-xYxNi alloys,” Physical Review B, vol. 55, no. 13, pp. 8369–8373, 1997. View at Google Scholar · View at Scopus
  5. P. L. Paulose, S. Patil, R. Mallik, E. V. Sampathkumaran, and V. Nagarajan, “Ni3d-Gd4f correlation effects on the magnetic behaviour of GdNi,” Physica B, vol. 223-224, no. 1-4, pp. 382–384, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Gratz, G. Hilscher, H. Sassik, and V. Sechovsky, “Magnetic properties and electrical resistivity of (GdxLa1-x)Ni, (0x1),” Journal of Magnetism and Magnetic Materials, vol. 54-57, no. 1, pp. 459–460, 1986. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Gratz and A. Lindbaum, “Anomalous thermal expansion in Gd-based intermetallics,” Journal of Magnetism and Magnetic Materials, vol. 177-181, no. 2, pp. 1077–1078, 1998. View at Google Scholar · View at Scopus
  8. D. Paudyal, Y. Mudryk, Y. B. Lee, V. K. Pecharsky, K. A. Gschneidner Jr., and B. N. Harmon, “Understanding the extraordinary magnetoelastic behavior in GdNi,” Physical Review B, vol. 78, no. 18, Article ID 184436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Poldy and K. N. R. Taylor, “Possible influence of 3d states on the stability of rare earth-rich rare earth-transition metal compounds,” Physica Status Solidi A, vol. 18, no. 1, pp. 123–128, 1973. View at Google Scholar · View at Scopus
  10. R. E. Walline and W. E. Wallace, “Magnetic and structural characteristics of lanthanide-nickel compounds,” The Journal of Chemical Physics, vol. 41, no. 6, pp. 1587–1591, 1964. View at Google Scholar · View at Scopus
  11. Y. L. Yaropolov, V. N. Verbetsky, A. S. Andreenko, K. O. Berdyshev, and S. A. Nikitin, “Magnetic properties of the intermetallic compounds RNi (R = Gd, Tb, Dy, Sm) and their hydrides,” Inorganic Materials, vol. 46, no. 4, pp. 364–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. C. Baenziger and J. L. Moriarty Jr., “Gadolinium and dysprosium intermetallic phases. I. The crystal structures of DyGa and GdPt and their related compounds,” Acta Crystallographica, vol. 14, pp. 946–947, 1961. View at Publisher · View at Google Scholar
  13. S. K. Tripathy, K. G. Suresh, R. Nirmala, A. K. Nigam, and S. K. Malik, “Magnetocaloric effect in the intermetallic compound DyNi,” Solid State Communications, vol. 134, no. 5, pp. 323–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Kumar, K. G. Suresh, A. K. Nigam, and O. Gutfleisch, “Large reversible magnetocaloric effect in RNi compounds,” Journal of Physics D, vol. 41, no. 24, Article ID 245006, 2008. View at Publisher · View at Google Scholar
  15. P. J. von Ronke, D. F. Grangeia, A. Caldas, and N. A. Oliveria, “Investigations on magnetic refrigeration: application to RNi2 (R = Nd, Gd, Tb, Dy, Ho, and Er),” Journal of Applied Physics, vol. 93, p. 4055, 2003. View at Publisher · View at Google Scholar
  16. R. Mondal, R. Nirmala, J. Arout Chelvane, and A. K. Nigam, “Magnetocaloric effect in the rare earth intermetallic compounds RCoNi (R = Gd, Tb, Dy, and Ho),” Journal of Applied Physics, vol. 113, p. 17A930, 2013. View at Publisher · View at Google Scholar
  17. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented PlAne Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001.
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Google Scholar · View at Scopus
  21. M. A. Blanco, E. Francisco, and V. Luaña, “GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye modelComputer Physics Communications,” vol. 158, no. 1, pp. 57–72, 2004. View at Publisher · View at Google Scholar
  22. F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 30, no. 9, pp. 244–247, 1944. View at Google Scholar