Table of Contents
ISRN Geology
Volume 2014 (2014), Article ID 798706, 13 pages
Research Article

Geodynamic Framework of Saline Systems in Eastern Tunisia: Saline Depressions Inherited from the Triassic Intrusions and/or the Messinian Salinity Crisis

1National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
2RU: Sedimentary Dynamics and Environment (DSE) (Code 03/UR/10-03), National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
3Laboratory of Water Energy and Environment, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
4Faculty of Sciences of Sfax, University of Sfax, Road of Soukra, km 4, 3038 Sfax, Tunisia
5Higher Institute of Biotechnology of Monastir, Tahar Haddad Avenue, University of Monastir, Road Salem Bechir, BP n56, 5000 Monastir, Tunisia

Received 12 October 2013; Accepted 24 December 2013; Published 24 April 2014

Academic Editors: A. Förster and T. N. Singh

Copyright © 2014 Elhoucine Essefi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Based on the geodynamic context, two hypotheses of origin of salt in the subsurface of the Sahel area are worth being defended. The first suggests that the halokinesis activities, namely, of the Triassic evaporitic sedimentation, may still be until now influencing the functioning of the saline systems in the Sahel. The second integrates the Sahel area geodynamic evolution in the framework of the convergence between African and Eurasian plates. It suggests a link between the blockage of the subduction between African and Eurasian plates in North Tunisia, the Messinian Salinity Crisis, and eventually the concrete opening and evolution of the playa during the Quaternary. Such a suggestion is materialized by a geodynamic model relating successively these events. This scenario suggests that the Messinian Salinity Crisis constituted huge quantities of salt and/or salty water. This saline subsurface reserve is until now influencing the Sahel behavior as a whole. Through groundwater convergence, huge quantities of salt are accumulated within depressions of the Sahel area. Currently, the convergence of the plate between African and Eurasian plates results in a tectonic activity within these saline systems materialized by the formation of fault spring mounds along preferential orientation ensuring the surface-subsurface connectivity.