Table of Contents
ISRN Dermatology
Volume 2014, Article ID 843687, 14 pages
http://dx.doi.org/10.1155/2014/843687
Review Article

Nanotechnology-Based Cosmeceuticals

1School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
2GRD Institute of Management and Technology, Dehradun, Uttarakhand 248009, India
3Institute of Biotechnology, Patwadangar, Nainital, Uttarakhand 263128, India

Received 8 February 2014; Accepted 4 March 2014; Published 22 May 2014

Academic Editors: T. Maisch and T. J. Ryan

Copyright © 2014 Alka Lohani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U.S. Food and Drug Administration, “Is it a cosmetic, a drug, or both? (Or is it soap?),” http://www.fda.gov/cosmetics/guidancecomplianceregulatoryinformation/ucm074201.htm.
  2. U.S. Food and Drug Administration, “Cosmetics Q&A: FDA's Authority,” http://www.fda.gov/Cosmetics/ResourcesForYou/Consumers/CosmeticsQA/ucm135709.htm.
  3. M. H. Fulekar, Nanotechnology: Importance and Application, IK International Publishing House, New Delhi, India, 2010.
  4. S. Mukta and F. Adam, “Cosmeceuticals in day-to-day clinical practice,” Journal of Drugs in Dermatology, vol. 9, no. 5, pp. s62–s66, 2010. View at Google Scholar · View at Scopus
  5. “Cosmeceuticals: Products and Global Markets,” http://www.bccresearch.com/market-research/advanced-materials/cosmeceuticals-global-markets-avm099a.html.
  6. F. S. Brandt, A. Cazzaniga, and M. Hann, “Cosmeceuticals: current trends and market analysis,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 3, pp. 141–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. RNCOS E-Services Pvt. Ltd., “Global cosmeceuticals market outlook 2016,” http://www.giiresearch.com/report/rnc263147-global-cosmeceuticals-market outlook.html.
  8. GBI Research, “Cosmeceuticals market to 2018—Technological advances and consumer awareness boost commercial potential for innovative and premium-priced products,” http://www.researchandmarkets.com/reports/2393091/cosmeceuticals_market_to_2018_technological.
  9. R. Singh, S. Tiwari, and J. Tawaniya, “Review on nanotechnology with several aspects,” International Journal of Research in Computer Engineering and Electronics, vol. 2, no. 3, pp. 1–8, 2013. View at Google Scholar
  10. M. N. Padamwar and V. B. Pokharkar, “Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability,” International Journal of Pharmaceutics, vol. 320, no. 1-2, pp. 37–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Mu and R. L. Sprando, “Application of nanotechnology in cosmetics,” Pharmaceutical Research, vol. 27, no. 8, pp. 1746–1749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Ekambaram, A. A. H. Sathali, and K. Priyanka, “Solid lipid nanoparticles: a review,” Scientific Reviews & Chemical Communications, vol. 2, pp. 80–102, 2012. View at Google Scholar
  13. D. Bei, J. Meng, and B.-B. C. Youan, “Engineering nanomedicines for improved melanoma therapy: progress and promises,” Nanomedicine, vol. 5, no. 9, pp. 1385–1399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. D. Bangham, “Physical structure and behavior of lipids and lipid enzymes,” Advances in Lipid Research, vol. 64, pp. 65–104, 1963. View at Google Scholar · View at Scopus
  15. M. Mezei and V. Gulasekharam, “Liposomes - a selective drug delivery system for the topical route of administration. I. Lotion dosage form,” Life Sciences, vol. 26, no. 18, pp. 1473–1477, 1980. View at Publisher · View at Google Scholar · View at Scopus
  16. I. P. Kaur and R. Agrawal, “Nanotechnology: a new paradigm in cosmeceuticals,” Recent Patents on Drug Delivery & Formulation, vol. 1, no. 2, pp. 171–182, 2007. View at Google Scholar · View at Scopus
  17. D. D. Lasic, “Novel applications of liposomes,” Trends in Biotechnology, vol. 16, no. 7, pp. 307–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. C. C. Müller-Goymann, “Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 343–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. S. Poletto, R. C. R. Beck, S. S. Guterres, and A. R. Pohlmann, “Polymeric nanocapsule: concepts and applications,” in Nanocosmetics and Nanomedicines: New Approaches for Skin Care, R. Beck, S. Guterres, and A. Pohlmann, Eds., pp. 47–51, Springer, Berlin, Germany, 2011. View at Google Scholar
  20. P. Kothamasu, H. Kanumur, N. Ravur et al., “Nanocapsules: the weapons for novel drug delivery systems,” BioImpacts, vol. 2, no. 2, pp. 71–81, 2012. View at Google Scholar
  21. J. Pardeike, A. Hommoss, and R. H. Müller, “Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products,” International Journal of Pharmaceutics, vol. 366, no. 1-2, pp. 170–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. H. Müller, R. D. Petersen, A. Hommoss, and J. Pardeike, “Nanostructured lipid carriers (NLC) in cosmetic dermal products,” Advanced Drug Delivery Reviews, vol. 59, no. 6, pp. 522–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Wissing, K. Mader, and R. H. Muller, “Solid lipid nanopartices (SLN) as a novel carrier system offering prolonged release of the perfume Allure (Chanel),” in Proceedings of the International Symposium on Controlled Release of Bioactive Materials, vol. 27, pp. 311–312, Paris, France, 2000.
  24. Z. Mei, Q. Wu, S. Hu, X. Li, and X. Yang, “Triptolide loaded solid lipid nanoparticle hydrogel for topical application,” Drug Development and Industrial Pharmacy, vol. 31, no. 2, pp. 161–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. B. Souto and R. H. Müller, “Cosmetic features and applications of lipid nanoparticles (SLN, NLC),” International Journal of Cosmetic Science, vol. 30, no. 3, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. M. Keck and R. H. Müller, “Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 62, no. 1, pp. 3–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Sakamoto, A. Annapragada, P. Decuzzi, and M. Ferrari, “Antibiological barrier nanovector technology for cancer applications,” Expert Opinion on Drug Delivery, vol. 4, no. 4, pp. 359–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Petersen, “Nanocrystals for use in topical cosmetic formulations and method of production thereof,” US Patent US 20100047297A1. February 2010.
  29. “Dendrimers & Dendrons: Facets of Pharmaceutical Nanotechnology,” Drug-Dev Newsletter, http://www.kellerfoundation.com/ME2/dirmod.asp?sid=4306B1E9C3CC4E07A4D64E23FBDB232C&nm= Back+Issues&type=Publishing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F 87F791&tier=4&id=9B9BA1DAA5BE455A85A81D97382FE885.
  30. F. Tournihac and P. Simon, “Cosmetic or dermatological topical compositions comprising dendritic polyesters,” U.S. Patent 6,287,552, September 2001.
  31. H. Furukawa and T. Limura, “Copolymer having carbosiloxane dendrimer structure, and composition and cosmetic containing the same,” U.S. Patent 20120263662A1, October 2012.
  32. Y. Lin and L. Yan, “Broad spectrum anti-bactericidal ointment nano.,” CN Patent. CN 1480045 A. March 2004.
  33. “First synthesis of gold nanoparticles inside human hair for dyeing and much more,” http://www.nanowerk.com/news2/newsid=28260.php.
  34. S. Hyde, A. Andersson, K. Larsson et al., The Language of Shape, Elsevier, New York, NY, USA, 1st edition, 1997.
  35. S. C. Kimmes and C. Feltin, “Cosmetic composition comprising an oil and a polymer both bearing a hydrogen-bond-generating joining group, and cosmetic treatment process,” European Patent 2575751A1, April 2013.
  36. A. Ribier and B. Biatry, “Cosmetic or dermatologic oil/water dispersion stabilized with cubic gel particles and method of preparation,” European Patent 0711540B1, May 2000.
  37. H. Albrecht and J. Schreiber, “Hair care products with disperse liquid crystals exhibiting the cubic phases,” W.O. Patent 2002041850A1, May 2002.
  38. J. T. Simonnet, O. Sonneville, and S. Legret, “Nanoemulsion based on phosphoric acid fatty acid esters and its uses in the cosmetics, dermatological, pharmaceutical, and/or ophthalmological fields,” U.S. Patent 6274150 B1, August 2001.
  39. S. Anisha, S. P. Kumar, G. V. Kumar, and G. Garima, “Approaches used for penetration enhancement in transdermal drug delivery system,” International Journal of Pharmaceutical Sciences, vol. 2, no. 3, pp. 708–716, 2010. View at Google Scholar · View at Scopus
  40. A. Sankhyan and P. Pawar, “Recent trends in noisome as vesicular drug delivery system,” Journal of Applied Pharmaceutical Science, vol. 2, pp. 20–32, 2012. View at Google Scholar
  41. M. Lens, “Use of fullerenes in cosmetics,” Recent Patents on Biotechnology, vol. 3, no. 2, pp. 118–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Cusan, T. Da Ros, G. Spalluto et al., “A new multi-charged C60 derivative: synthesis and biological properties,” European Journal of Organic Chemistry, no. 17, pp. 2928–2934, 2002. View at Google Scholar · View at Scopus
  44. M. D. Carmen, V. Pereda, A. Polezel et al., “Sericin cationic nanoparticles for application in products for hair and dyed hair,” U.S. Patent 20120164196, June 2012.
  45. T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 95–112, 2011. View at Google Scholar · View at Scopus
  46. T. Faunce, “Exploring the safety of nanoparticles in Australian Sunscreens,” International Journal of Biomedical Nanoscience and Nanotechnology, vol. 1, pp. 87–94, 2010. View at Google Scholar
  47. L'Oreal Paris, http://www.lorealparisusa.com/en/Products/Skin Care/Moisturizers/RevitaLift-Anti-Wrinkle-Firming-Day-Cream-SPF-18.aspx.
  48. Z. D. Draelos, “Retinoids in cosmetics,” Cosmetic Dermatology, vol. 18, no. 1, pp. 3–5, 2005. View at Google Scholar · View at Scopus
  49. C. M. Choi and D. S. Berson, “Cosmeceuticals,” Seminars in Cutaneous Medicine and Surgery, vol. 25, no. 3, pp. 163–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. “The project on emerging nanotechnologies,” http://www.nanotechproject.org/inventories/consumer/browse/products/5043/.
  51. D. Ereno, “Well-grounded Beauty,” http://revistapesquisa.fapesp.br/en/2008/04/01/wellgrounded-beauty/.
  52. K. Ertel, “Personal cleansing products: properties and use,” in Cosmetic Formulation of Skin Care Products, Z. D. Draelos and L. A. Thaman, Eds., pp. 32–36, Taylor & Francis, New York, NY, USA, 2006. View at Google Scholar
  53. “Nanocyclic cleanser pink,” http://www.nanocyclic.com/ProductDetails.asp?ProductCode=CY-40P.
  54. T. H. Ha, J. Y. Jeong, B. T. Y. H. Jung, and J. K. Kim, “Cosmetic pigment composition containing gold or silver nano-particles,” European Patent 1909745A1, April 2008.
  55. P. J. L. Viladot, G. R. Delgado, and B. A. Fernandez, “Lipid nanoparticle capsules.,” European Patent 2549977A2, January 2013.
  56. S. W. Amato, A. Farer, W. M. Hoyte, M. Pavlovsky et al., “Coatings for mammalian nails that include nanosized particles,” U.S. Patent 2007/002207, August 2007.
  57. NanoLabs, http://nanolabs.us/press-releases/green-chemistry-and-new-thinking-at-playas-nano-labs-ctle-receives-provisional-patent-for-unique-nanotech-nail-polish/.
  58. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. C. S. Yah, G. Simate, and S. E. Iyuke, “Nanoparticles toxicity and their routes of exposures,” Pakistan Journal of Pharmaceutical Sciences, vol. 25, no. 2, pp. 477–491, 2012. View at Google Scholar · View at Scopus
  60. J. A. B. Paul and P. F. S. Roel, “Toxicological characterization of engineered nanoparticles,” in Nanoparticle Technology for Drug Delivery, R. B. Gupta and U. B. Kompella, Eds., pp. 161–170, Taylor & Francis, New York, NY, USA, 2006. View at Google Scholar
  61. S. Raj, S. Jose, U. S. Sumod, and M. Sabitha, “Nanotechnology in cosmetics: opportunities and challenges,” Journal of Pharmacy and Bioallied Sciences, vol. 4, no. 3, pp. 186–193, 2012. View at Google Scholar
  62. C. Buzea, I. I. P. Blandino, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 4, pp. MR17–MR172, 2007. View at Google Scholar
  63. H. A. E. Benson, “Transdermal drug delivery: penetration enhancement techniques,” Current Drug Delivery, vol. 2, no. 1, pp. 23–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M.-A. Bolzinger, S. Briançon, J. Pelletier, and Y. Chevalier, “Penetration of drugs through skin, a complex rate-controlling membrane,” Current Opinion in Colloid and Interface Science, vol. 17, no. 3, pp. 156–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Cevc and U. Vierl, “Nanotechnology and the transdermal route. A state of the art review and critical appraisal,” Journal of Controlled Release, vol. 141, no. 3, pp. 277–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Toll, U. Jacobi, H. Richter, J. Lademann, H. Schaefer, and U. Blume-Peytavi, “Penetration profile of microspheres in follicular targeting of terminal hair follicles,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 168–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. S. J. Christopher, L. Campbell, L. R. Contreras-Rojas et al., “Objective assessment of nanoparticle disposition in mammalian skin after topical exposure,” Journal of Controlled Release, vol. 162, no. 1, pp. 201–207, 2012. View at Google Scholar
  68. B. Gulson, M. Mccall, M. Korsch et al., “Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin,” Toxicological Sciences, vol. 118, no. 1, pp. 140–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Gulson, M. McCall, L. Gomez, M. Korsch et al., “Dermal absorption of ZnO particles from sunscreens applied to humans at the beach,” in International Conference on Nanoscience and Nanotechnology, Sydney, Australia, February 2010.
  70. M. Senzui, T. Tamura, K. Miura, Y. Ikarashi, Y. Watanabe, and M. Fujii, “Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro,” Journal of Toxicological Sciences, vol. 35, no. 1, pp. 107–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Butz, “Dermal penetration of nanoparticles: what we know and what we don't. Cosmetic. Science Conference Proceedings, Munich,” SÖFW Journal, vol. 135, no. 4, pp. 8–10, 2009. View at Google Scholar
  72. P. Filipe, J. N. Silva, R. Silva et al., “Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption,” Skin Pharmacology and Physiology, vol. 22, no. 5, pp. 266–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Mavon, C. Miquel, O. Lejeune, B. Payre, and P. Moretto, “In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen,” Skin Pharmacology and Physiology, vol. 20, no. 1, pp. 10–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Pflücker, V. Wendel, H. Hohenberg et al., “The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide,” Skin Pharmacology and Applied Skin Physiology, vol. 14, no. 1, pp. 92–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Menzel, T. Reinert, J. Vogt, and T. Butz, “Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 219-220, no. 1-4, pp. 82–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Lademann, H.-J. Weigmann, C. Rickmeyer et al., “Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice,” Skin Pharmacology and Applied Skin Physiology, vol. 12, no. 5, pp. 247–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. A. S. Dussert and E. Gooris, “Characterisation of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum,” International Journal of Cosmetic Science, vol. 19, pp. 119–129, 1997. View at Google Scholar
  78. K. Takeda, K.-I. Suzuki, A. Ishihara et al., “Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems,” Journal of Health Science, vol. 55, no. 1, pp. 95–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Dunford, A. Salinaro, L. Cai et al., “Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients,” FEBS Letters, vol. 418, pp. 87–90, 1997. View at Google Scholar
  80. S. Arora, J. M. Rajwade, and K. M. Paknikar, “Nanotoxicology and in vitro studies: the need of the hour,” Toxicology and Applied Pharmacology, vol. 258, no. 2, pp. 151–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. W. H. De Jong and P. J. A. Borm, “Drug delivery and nanoparticles: applications and hazards,” International Journal of Nanomedicine, vol. 3, no. 2, pp. 133–149, 2008. View at Google Scholar · View at Scopus
  82. V. K. M. Poon and A. Burd, “In vitro cytotoxity of silver: implication for clinical wound care,” Burns, vol. 30, no. 2, pp. 140–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. U.S. Food and Drug Administration, “Import Alert 66-38,” http://www.accessdata.fda.gov/cms_ia/importalert_188.html.
  84. “Nanomaterials and the EU Cosmetics Regulation: Implications for Your Company,” http://www.gcimagazine.com/business/management/regulation/143553126.html?pa.
  85. “New EU Cosmetics Regulations:A Quick Guide for Busy Formulators,” http://chemistscorner.com/new-eu-cosmetics-regulations-a-quick-guide-for-busyformulators/.
  86. N. Stafford, “New nano rule for EU cosmetics. Royal society of Chemistry,” http://www.rsc.org/chemistryworld/News/2009/November/27110901.asp.