Table of Contents
ISRN Geology
Volume 2014 (2014), Article ID 865941, 10 pages
http://dx.doi.org/10.1155/2014/865941
Research Article

Fluid Evolution of the Magmatic Hydrothermal Porphyry Copper Deposit Based on Fluid Inclusion and Stable Isotope Studies at Darrehzar, Iran

1Department of Basic Sciences, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
2Department of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran

Received 3 August 2013; Accepted 22 September 2013; Published 8 January 2014

Academic Editors: A. C. Riccardi and A. V. Travin

Copyright © 2014 B. Alizadeh Sevari and A. Hezarkhani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Darrehzar porphyry Cu-Mo deposit is located in southwestern Iran (~70 km southwest of Kerman City). The porphyries occur as Tertiary quartz-monzonite stocks and dikes, ranging in composition from microdiorite to diorite and granodiorite. Hydrothermal alteration and mineralization at Darrehzar are centered on the stock and were broadly synchronous with its emplacement. Early hydrothermal alteration was dominantly potassic and propylitic and was followed by later phyllic and argillic alteration. The hydrothermal system involved both magmatic and meteoric water which were boiled extensively. Copper mineralization was accompanied by both potassic and phyllic alterations. Based on number, nature, and phases number which are available in room temperature, three types of fluid inclusions are typically observed in these veins: (1) vapor rich, (2) liquid rich and (3) multi phase. The primary multiphase inclusions within the quartz crystals were chosen for microthermometric analyses. Early hydrothermal alteration was caused by high-temperature, high-salinity orthomagmatic fluid and produced a potassic assemblage. Phyllic alteration was caused by high-salinity and lower-temperature orthomagmatic fluid. Magmatic and meteoric water mixtures were developed in the peripheral part of the stock and caused propylitic alteration which is attributed to a liquid-rich, lower temperature.