Research Article  Open Access
Raman Bedi, S. P. Singh, Rakesh Chandra, "Flexural FatigueLife Assessment and Strength Prediction of Glass Fibre Reinforced Polymer Concrete Composites", International Scholarly Research Notices, vol. 2014, Article ID 928278, 8 pages, 2014. https://doi.org/10.1155/2014/928278
Flexural FatigueLife Assessment and Strength Prediction of Glass Fibre Reinforced Polymer Concrete Composites
Abstract
The paper presents the results of an investigation conducted to assess the fatiguelife and prediction of flexural fatigue strength of polymer concrete composites based on epoxy resin as binder material. Three point flexural fatigue tests were conducted on polymer concrete specimens using MTS servo controlled actuator, to obtain the fatigue lives of the composites at different stress levels. One hundred and thirtyseven specimens of size mm were tested in flexural fatigue. Fortythree static flexural tests were also conducted to facilitate fatigue testing. It has been observed that the probabilistic distribution of fatiguelife of polymer concrete composite (PCC) and glass fibre reinforced polymer concrete composite (GFRPCC), at a particular stress level, approximately follows the twoparameter Weibull distribution, with statistical corelation coefficient values exceeding 0.90. The fatigue strength prediction model, representing SN relationship, has been examined and the material coefficients have been obtained for GFRPCC containing 0.5% and 1.0% glass fibres. Design fatigue lives for GFRPCC containing different contents of glass fibres have been estimated for acceptable probabilities of failure and compared with those of PCC.
1. Introduction
Polymer concrete composites (PCC) have been in use in the domain of civil engineering since the 1960s for various applications. Later on, due to its better properties, the material has been utilized extensively for applications such as pump base plates and machine tool bases, and so forth. Recent studies on machine tools having bases made of PCC and glass fibre reinforced polymer concrete composite (GFRPCC) have concluded that components manufactured on these have better surface finish and tolerance when compared to those with cast iron bases [1–3]. The most important reason for this is the vibration damping capability of PCC and GFRPCC which is significantly higher than conventional machine building materials like cast iron [4–6]. Fatigue loading is inevitable in these applications and, therefore, accurate characterization of fatigue behaviour of PCC and GFRPCC is of immense importance.
Studies on fatigue behaviour of PCC have been reported in literature [7–9], but a small number of specimens have been tested in most of these studies and fatiguelife distributions for PCC have not been reported. It is pertinent to note that in investigations wherein the probabilistic analysis of the fatigue data is the prime objective, it is desirable to test relatively large number of specimens at a given stress level to obtain fatiguelife data which is statistically significant.
Fatiguelife predictions based on experimental investigations report a large scatter in the fatiguelife data at same stress level, even under carefully controlled conditions. This dispersion in fatiguelife data has, therefore, been a topic of research [10–13] over the last decade. Various fatigue strength prediction models have also been proposed to predict the fatiguelife of composite materials. Most of these models provide relationship between applied stress level and number of cycles to failure [9, 11]. To relate probability of failure with stress level and number of cycles to failure, an equation proposed by McCall [14] has been used previously for fatigue strength prediction of PCC [7, 9].
A number of studies on fibre reinforced polymer concrete composites (FRPCC) cite improvement in mechanical properties due to addition of fibres [15–19]. All of these studies have reported only the behaviour of PCC and FRPCC under statically applied loads. As per the information of the authors, no study has been reported till date on the fatigue behaviour of FRPCC. Therefore, an extensive investigation to study the flexural fatigue characteristics of PCC and FRPCC containing different contents of glass and polypropylene fibres was planned and is currently underway. The results reported here on fatigue of PCC and GFRPCC are a part of this larger investigation.
2. Materials Used
Epoxy resin, LAPOXB47 along with hardener LAPOXK46 supplied by Atul Ltd., Mumbai, has been used in this investigation. The hardener and resin have been mixed in the ratio of 1 : 2 by weight. The particular grade of epoxy resin is chosen because of its low viscosity which results in better workability of the mix. Resin dosage of 10–14% by weight of PCC has been reported in literature when using coarse aggregates [5, 20, 21] whereas higher resin dosages up to 20% have reported when using only sand as aggregate material [22]. Resin dosage of 12% by weight of PCC has been used in this investigation.
Aggregate grading plays an important role in the final properties of PCC and therefore an optimized aggregate mix suggested in literature has been used in this study [23]. Locally available crushed gravel has been used as aggregate in PCC. The aggregate mix had been optimized based upon the least void content criteria. A microfiller is also often added to PCC mix to reduce the void content in aggregate mixture and thereby increase the strength of PCC. Fly ash is a byproduct of the coal burning in power plants and is used as a filler because of its easy availability and because of that its usage in PCC is reported to yield better mechanical properties as well as reduced water absorption [24]. Ftype fly ash has been used in the ratio of 10% by total weight of PCC in this study.
Addition of glass fibres in PCC is reported to enhance the flexural strength, compressive strength, and so forth of the resulting material [18, 25]. Alkali resistant macro glass fibres (Anti CrakHP) supplied by Owens Corning India were added in PCC. The glass fibre dosage was kept at 0.5% and 1.0% by weight of PCC. The glass fibres had an average length of 12 mm.
Aggregate material and fly ash were dried before preparation of samples to reduce moisture content below 0.5% as it has been reported that moisture content of aggregates has a deleterious effect on the properties of polymer concrete [26]. The specimens of 40 × 40 × 160 mm size were cast on a vibratory table using the materials listed above. The specimen size has been chosen as per RILEM PC2TC113 and has been used by a number of researchers in their work on polymer concrete [22, 27]. The specimens were cured at room temperature for 7 days before conducting the fatigue tests as per method adopted by a number of other researchers [28–30].
3. Estimation of Static Flexural Strength
The estimation of static flexural strength () of PCC and GFRPCC is a prerequisite for the selection of maximum and minimum loads to be applied during fatigue tests. The static flexural strength of the PCC and GFRPCC specimens was, therefore, evaluated prior to fatigue testing. Generally, 45 specimens from a particular batch were randomly selected and tested to determine their static flexural strength. Average static flexural strength of 24.41 MPa was obtained for PCC, 28.16 MPa for GFRPCC with 0.5% glass fibres, and 30.47 MPa for GFRPCC with 1% glass fibres. It is observed that the addition of glass fibres enhances the static flexural strength of PCC. An increase of 15% in static flexural strength is observed by addition of 0.5% glass fibres by weight when compared to PCC, whereas addition of 1.0% glass fibres resulted in an increase of the static flexural strength to the tune of 25%.
4. Fatigue Testing Procedure
All the fatigue tests were carried out on a 100 kN MTSCyclic load testing facility in three point bending modes. The loading span was taken as 100 mm. A stress ratio of was used in fatigue testing. The tests were carried out at a frequency of 10 Hz. The minimum fatigue stress () and maximum fatigue stress () to be applied on test specimen were selected from and a particular stress level “” (). For each mix, the first test was conducted at the highest possible stress level and the number of cycles to failure was noted as fatiguelife “.” Subsequent tests were conducted by lowering the stress levels in a systematic manner. Since fatigue testing is a time consuming and expensive process and a large number of specimens were proposed to be tested, an upper limit of number of cycles to be applied was fixed depending upon the availability of testing equipment and time constraints. A particular test was terminated as the failure of the specimen occurred or the upper limit was reached, which ever was earlier.
5. Analysis and Discussion of Fatigue Test Results
The complete fatiguelife data obtained at various stress levels for PCC is reported elsewhere [31]. For GFRPCC with 0.5% and 1.0% fibres, the fatigue life data is listed in ascending order in Tables 1 and 2, respectively. Some data points listed in Tables 1 and 2 may deserve consideration for rejection as outliers. Chauvenet’s criterion [32] was applied to the data points at all the stress levels tested in this investigation, and data points meeting this criterion for rejection were identified and excluded from further analysis. A few other researchers have also used the same criterion for rejection of outliers in their work on fatigue [12, 13].
 
Rejected as outlier by Chauvenet’s criteria, not included in analysis. 
 
Rejected as outlier by Chauvenet’s criteria, not included in analysis. Runout, not included in analysis. 
6. FatigueLife Distributions of PCC and GFRPCC
Weibull distribution function has proved to be useful and versatile means of describing fatigue behaviour of cement concrete [12, 33] as well as other composite materials [13]. This is because the probability density function of the Weibull distribution has a wide variety of shapes. Therefore, because of physically valid assumptions, sound experimental verification, relative ease in its use, and better developed statistics, the Weibull distribution is being used extensively for statistical description of fatiguelife data.
7. Analysis of FatigueLife Data by Graphical Method
A twoparameter Weibull distribution function is characterized by a cumulative distribution function (CDF), as follows: in which = specific value of the random variable ; = shape parameter or Weibull slope at stress level and = scale parameter or characteristic life at stress level .
The probability of survival or survivorship function or reliability function, , may be defined as , and substituting this value of in (2) and taking logarithm on both sides, it is modified to Equation (2) represents a linear relationship between and . In order to obtain a graph from (2), the fatiguelife data corresponding to a particular stress level are first arranged in ascending order of cycles to failure and the empirical survivorship function for each of fatiguelife data at a given stress level is obtained from the following relation [32]: where denotes the failure order number and represents the number of data points in a data sample under consideration at a particular stress level . The empirical survivorship function in the form of for each of fatiguelife data is then plotted on a graph with the corresponding fatigue lives . If a linear trend is established for the data points, the best fit line is drawn using method of least squares. It can then be assumed that fatiguelife data for that particular stress level follows the twoparameter Weibull distribution. The slope of the line provides an estimate of shape parameter and the characteristic life can be obtained as that value of which corresponds to = 0.368. It has been reported elsewhere by the authors [31] that fatiguelife data for PCC approximately follows a twoparameter Weibull distribution. Figure 1 presents the fatiguelife data for few selected stress levels plotted as described above for GFRPCC—0.5% and GFRPCC—1%. The approximate straight line plots in this figure with statistical correlation coefficients “” exceeding 0.9 indicated that the twoparameter Weibull distribution is a reasonable assumption for the statistical distribution of fatiguelife for GFRPCC. Similar results have been obtained at all the stress levels in this investigation. The estimated parameters thus obtained are listed in Table 3.

8. Analysis of the FatigueLife Data by the Method of Maximum Likelihood Estimate
The method of maximum likelihood estimate can also be used to obtain the Weibull parameters. The probability density function of the Weibull distribution can be rewritten as follows [34]: where The likelihood function may then be expressed as Equation (6) leads to the log likelihood function; that is, Taking partial derivatives for the log likelihood function with respect to and and setting the equations equal to zero and solving for and , the following equations are obtained [34]: where and are the maximum likelihood estimators of and , respectively, and is the failure order number and represents the number of data points in a data sample.
Thus (5), (8), and (9) can be used to estimate the Weibull parameters for the fatiguelife data at various stress levels for GFRPCC having different fibre contents. Firstly, the shape parameter is obtained by (9) by a trial and error procedure. As a first trial, the average value of shape parameter calculated by the graphical method and the method of moments can be used. Then the maximum likelihood estimator for the fatiguelife data, at a particular stress level, is calculated from (8). Finally, the parameter u is determined from (5). The Weibull parameters as obtained in this investigation for GFRPCC with 0.5% glass fibers and GFRPCC with 1.0% glass fibers are also listed in Table 3.
It can be seen from the results that there is significant decrease in the values of shape parameters for GFRPCC compared to PCC whose results are reported elsewhere by the authors [31]. This indicates higher variability in the distribution of fatiguelife data of GFRPCC compared to PCC. A maximum decrease of approximately 17% at has been observed with the addition 0.5% glass fibres to PCC. Similarly, a maximum decrease of the order of 34% at has been observed with the addition of 1.0% of glass fibres to PCC.
9. Fatigue Strength Prediction Model
A form of fatigue equation commonly used by the researchers for prediction of fatigue strength of materials is given by (10) as follows [35]: A distinct feature of this equation is that the value of as becomes small. This equation satisfies the extreme boundary condition by having approach infinity as approaches zero. To obtain the material coefficients and , take log of (10) on both sides, A plot is drawn between and , where is the fatiguelife data obtained for GFRPCC at different stress levels tested in present investigation. The material coefficients and are thus obtained from the regression analysis.
Figures 2, 3, and 4 present the analysis to estimate coefficients and for PCC and GFRPCC containing 0.5% and 1.0% fibres, respectively, and the estimated values of and are listed in Table 4. The fatiguelife data reported for PCC elsewhere [31] has been used in Figure 2.

10. Estimation of Design Fatigue Lives
The fatiguelife data obtained in this investigation for GFRPCC witness large scatter. This is usually expected in the fatiguelife data even at a given stress level under carefully controlled test procedures. For PCC reinforced with fibres, that is, GFRPCC, this variability in the distribution of fatiguelife substantially increases compared to that of plain PCC. The design fatiguelife should be selected such that there is only a small probability that a fatigue failure will occur. Once the distribution function is determined as above, the design fatiguelife may be selected corresponding to an acceptable probability of failure. The design reliability may be expressed as , in which is the probability of failure. Thus the design fatiguelife corresponding to a permissible probability of failure can be obtained from (2) as follows [12]: Using the average values of the Weibull parameters and u corresponding to different stress levels for the fatiguelife data of GFRPCC as in Table 3, (12) has been used to calculate the design fatigue lives corresponding to selected acceptable probabilities of failure (), that is, 0.01, 0.05, 0.10, 0.15, and 0.25. The calculated design fatigue lives corresponding to selected probabilities of failure are listed in Tables 5 and 6 for GFRPCC containing 0.5% and 1.0% glass fibres, respectively. The “design fatiguelife curves" have been generated, using the design fatigue lives for GFRPCC listed in above tables, which could be useful to the design engineers. Figures 5 and 6 present the design fatiguelife curves for GFRPCC containing 0.5% glass fibers and GFRPCC containing 1.0% glass fibers, respectively.


It can be observed that addition of fibres into PCC enhances the fatiguelife of the resulting material. This increase is proportional to the amount of fibre addition within the range used in present investigation. Figure 7 presents the comparison between the design fatigue lives at a constant probability of failure, = 0.15 for fatiguelife data of PCC reported by the authors elsewhere [31] with that of GFRPCC with varying fibre content. It can be observed that, for a particular stress level , the GFRPCC with 1.0% glass fibre content has the highest design fatiguelife, followed by GFRPCC with 0.5% fibre content and PCC. This indicates that the best fatigue performance is given by GFRPCC with 1.0% fibre content, followed by GFRPCC with 0.5% and PCC if the performance is examined in terms of applied fatigue stress expressed as a percentage of corresponding static flexural stress, that is, stress level .
11. Conclusions
Flexural fatigue tests were conducted to obtain the fatigue lives of PCC and GFRPCC at different stress levels. Test data obtained has been analysed to establish the probability distributions of GFRPCC using twoparameter Weibull distribution and compared with PCC. Design fatigue lives have also been determined for PCC and GFRPCC and design fatiguelife curves have been generated. It has been seen that addition of glass fibres to PCC results in larger variability in the distribution of flexural fatigue lives of resulting material, that is, GFRPCC. On the other hand, significant improvements in the design fatigue lives have been observed for GFRPCC compared with PCC. Further, the fatigue strength prediction model representing  relationship has been examined and the material coefficients of the model have been estimated for PCC and GFRPCC containing different contents of fibres. The model can be used to predict the flexural fatigue strength of PCC and GFRPCC.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
References
 C. Bruni, A. Forcellese, F. Gabrielli, and M. Simoncini, “Hard turning of an alloy steel on a machine tool with a polymer concrete bed,” Journal of Materials Processing Technology, vol. 202, no. 1–3, pp. 493–499, 2008. View at: Publisher Site  Google Scholar
 C. Bruni, A. Forcellese, F. Gabrielli, and M. Simoncini, “Effect of the lubricationcooling technique, insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B,” International Journal of Machine Tools and Manufacture, vol. 46, no. 1213, pp. 1547–1554, 2006. View at: Publisher Site  Google Scholar
 M. Rahman, M. A. Mansur, L. K. Lee, and J. K. Lum, “Development of a polymer impregnated concrete damping carriage for linear guideways for machine tools,” International Journal of Machine Tools and Manufacture, vol. 41, no. 3, pp. 431–441, 2001. View at: Publisher Site  Google Scholar
 S. Orak, “Investigation of vibration damping on polymer concrete with polyester resin,” Cement and Concrete Research, vol. 30, no. 2, pp. 171–174, 2000. View at: Publisher Site  Google Scholar
 F. Cortés and G. Castillo, “Comparison between the dynamical properties of polymer concrete and grey cast iron for machine tool applications,” Materials & Design, vol. 28, no. 5, pp. 1461–1466, 2007. View at: Publisher Site  Google Scholar
 R. Bedi and A. Singh, “Adaptive neurofuzzy inference system in modelling damping performance of epoxy polymer concrete,” International Journal of Materials Engineering Innovation, vol. 4, pp. 18–34, 2013. View at: Google Scholar
 C. J. Chang, G. A. Woelfl, and M. McNerney, “Flexural fatigue of polymer concrete,” Cement, Concrete and Aggregates, vol. 3, no. 2, Article ID CCA10209J, 1981. View at: Publisher Site  Google Scholar
 K. Kobayashi, Y. Ohama, and T. Ito, “Fatigue properties of resin concrete under repeated compression loads,” Seisan Kenkyu, vol. 26, pp. 116–118, 1974. View at: Google Scholar
 C. Vipulanandan and S. Mebarkia, “Fatigue crack growth in polyester polymer concrete,” American Concrete Institute, vol. 201, pp. 153–168, 2001. View at: Google Scholar
 S. P. Singh, Y. Mohammadi, and S. K. Madan, “Flexural fatigue strength of steel fibrous concrete containing mixed steel fibres,” Journal of Zhejiang University SCIENCE A, vol. 7, no. 8, pp. 1329–1335, 2006. View at: Publisher Site  Google Scholar
 S. P. Singh and S. K. Kaushik, “Flexural fatigue analysis of steel fiberreinforced concrete,” ACI Materials Journal, vol. 98, pp. 306–312, 2001. View at: Google Scholar
 S. P. Singh and S. K. Kaushik, “Flexural fatigue life distributions and failure probability of steel fibrous concrete,” ACI Materials Journal, vol. 97, pp. 658–667, 2001. View at: Google Scholar
 R. Bedi and R. Chandra, “Fatiguelife distributions and failure probability for glassfiber reinforced polymeric composites,” Composites Science and Technology, vol. 69, no. 9, pp. 1381–1387, 2009. View at: Publisher Site  Google Scholar
 J. T. McCall, “Probability of fatigue failure of plain concrete,” Journal of the American Concrete Institute, vol. 55, pp. 233–244, 1958. View at: Google Scholar
 S. Mebarkia and C. Vipulanandan, “Compressive behavior of glassfiberreinforced polymer concrete,” Journal of Materials in Civil Engineering, vol. 4, no. 1, pp. 91–105, 1992. View at: Google Scholar
 C. Vipulanandan and S. K. Mantrala, “Behavior of fiber reinforced polymer concrete,” in Proceedings of the 4th Materials Engineering Conference, pp. 1160–1169, November 1996. View at: Google Scholar
 K. Sett and C. Vipulanandan, “Properties of polyester polymer concrete with glass and carbon fibers,” ACI Materials Journal, vol. 101, pp. 30–41, 2004. View at: Google Scholar
 J. Reis, “Mechanical characterization of fiber reinforced polymer concrete,” Materials Research, vol. 8, pp. 357–360, 2005. View at: Google Scholar
 J. Reis and A. Ferreira, “Fracture behavior of glass fiber reinforced polymer concrete,” Polymer Testing, vol. 22, no. 2, pp. 149–153, 2003. View at: Publisher Site  Google Scholar
 A. Fattah and M. ElHawary, “Flexural behavior of polymer concrete,” Construction and Building Materials, vol. 13, no. 5, pp. 253–262, 1999. View at: Publisher Site  Google Scholar
 K. Rebeiz, S. Serhal, and A. P. Craft, “Properties of polymer concrete using fly ash,” Journal of Materials in Civil Engineering, vol. 16, no. 1, pp. 15–19, 2004. View at: Publisher Site  Google Scholar
 A. J. M. Ferreira, C. Tavares, and C. Ribeiro, “Flexural properties of polyester resin concretes,” Journal of Polymer Engineering, vol. 20, no. 6, pp. 459–468, 2000. View at: Publisher Site  Google Scholar
 M. Muthukumar, D. Mohan, and M. Rajendran, “Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments,” Cement and Concrete Composites, vol. 25, no. 7, pp. 751–758, 2003. View at: Publisher Site  Google Scholar
 K. T. Varughese and B. K. Chaturvedi, “Fly ash as fine aggregate in polyester based polymer concrete,” Cement and Concrete Composites, vol. 18, no. 2, pp. 105–108, 1996. View at: Publisher Site  Google Scholar
 T. W. Brockenbrough, “Fiber reinforced methacrylate polymer concrete,” ACI Journal, pp. 322–325, 1982. View at: Google Scholar
 Y. Ohama, “Mix proportions and properties of polyester resin concretes,” American Concrete Institute, pp. 283–294, 1973. View at: Google Scholar
 M. Ribeiro, C. M. L. Tavares, M. Figueiredo, A. J. M. Ferreira, and A. A. Fernandes, “Bending characteristics of resin concretes,” Materials Research, vol. 6, no. 2, pp. 247–254, 2003. View at: Publisher Site  Google Scholar
 K. S. Rebeiz, “Timetemperature properties of polymer concrete using recycled PET,” Cement and Concrete Composites, vol. 17, pp. 119–124, 1995. View at: Google Scholar
 M. E. Tawfik and S. B. Eskander, “Polymer concrete from marble wastes and recycled poly(ethylene terephthalate),” Journal of Elastomers and Plastics, vol. 38, no. 1, pp. 65–79, 2006. View at: Publisher Site  Google Scholar
 Y. Ohama and K. Demura, “Relation between curing conditions and compressive strength of polyester resin concrete,” International Journal of Cement Composites and Lightweight Concrete, vol. 4, pp. 241–244, 1982. View at: Google Scholar
 R. Bedi, R. Chandra, and S. P. Singh, “Probabilistic analysis of fatigue life of polymer concrete,” Journal of Experimental & Applied Mechanics, vol. 4, no. 3, pp. 22–28, 2013. View at: Google Scholar
 J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and Scientists, A DunDonnelley Publishers, 1986.
 S. Goel, S. P. Singh, and P. Singh, “Fatigue analysis of plain and fiberreinforced selfconsolidating concrete,” ACI Materials Journal, vol. 109, pp. 573–582, 2012. View at: Google Scholar
 Y. Mohammadi and S. K. Kaushik, “Flexural fatiguelife distributions of plain and fibrous concrete at various stress levels,” Journal of Materials in Civil Engineering, vol. 17, no. 6, pp. 650–658, 2005. View at: Publisher Site  Google Scholar
 S. Goel, S. P. Singh, and P. Singh, “Flexural fatigue strength and failure probability of self compacting fibre reinforced concrete beams,” Engineering Structures, vol. 40, pp. 131–140, 2012. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2014 Raman Bedi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.