Table of Contents
ISRN Microbiology
Volume 2014 (2014), Article ID 941507, 6 pages
http://dx.doi.org/10.1155/2014/941507
Research Article

Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla-IMP and bla-VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals

1Department of Microbiology, Islamic Azad University, Lahijan Branch, Lahijan, Iran
2School of Medicine, Microbiology Department, Iran University of Medical Sciences, Tehran, Iran
3Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
4Drug Applied Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran

Received 4 February 2014; Accepted 2 March 2014; Published 23 April 2014

Academic Editors: C. Pazzani and P. Zunino

Copyright © 2014 Samira Aghamiri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Beta-lactamase producing strains of Pseudomonas aeruginosa are important etiological agents of hospital infections. Carbapenems are among the most effective antibiotics used against Pseudomonas infections, but they can be rendered infective by group B β-lactamase, commonly called metallo-beta lactamase. In this study, the antimicrobial sensitivity patterns of P. aeruginosa strains isolated from 9 different hospitals in Tehran, Iran, as well as the prevalence of MBLs genes (bla-VIM and bla-IMP) were determined. A total of 212 strains of P. aeruginosa recovered from patients in hospitals in Tehran were confirmed by both biochemical methods and PCR. Their antimicrobial sensitivity patterns were determined by Kirby-Bauer disk diffusion method. Following MIC determination, imipenem resistant strains were selected by DDST method which was followed by PCR tests for determination of MBLs genes: bla-IMP and bla-VIM. The results indicated that, in the DDST phenotypic method, among the 100 imipenem resistant isolates, 75 strains were MBLs positive. The PCR test indicated that 70 strains (33%) carried bla-VIM gene and 20 strains (9%) harbored bla-IMP. The results indicated that the extent of antibiotic resistance among Pseudomonas aeruginosa is on the rise. This may be due to production of MBLs enzymes. Therefore, determination of antibiotic sensitivity patterns and MBLs production by these bacteria, can be important in control of clinical Pseudomonas infection.