Table of Contents
International Scholarly Research Notices
Volume 2017, Article ID 2506946, 10 pages
https://doi.org/10.1155/2017/2506946
Research Article

Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania

1Department of Geography and Environmental Studies, University of Dodoma, P.O. Box 395, Dodoma, Tanzania
2Department of Engineering Sciences and Technology, Sokoine University of Agriculture, P.O. Box 3003, Morogoro, Tanzania
3Department of Soil and Geological Sciences, Sokoine University of Agriculture, P.O. Box 3008, Morogoro, Tanzania

Correspondence should be addressed to Barnabas M. Msongaleli; ku.oc.oohay@ilelagnosmb

Received 30 January 2017; Revised 17 March 2017; Accepted 4 April 2017; Published 27 April 2017

Academic Editor: Jerry Hatfield

Copyright © 2017 Barnabas M. Msongaleli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Q. Craufurd, V. Mahalakshmi, F. R. Bidinger et al., “Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod,” Theoretical and Applied Genetics, vol. 99, no. 5, pp. 900–911, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. K. Maredia, D. Byerlee, and P. Pee, “Impacts of food crop improvement research: evidence from sub-Saharan Africa,” Food Policy, vol. 25, no. 5, pp. 531–559, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Keya and P. Rubaihayo, “Progress in on-farm production and productivity in the east african community: 50 years after independence,” Kilimo Trust Technical Paper No. 8, International Symposium on Agriculture: EAC partner states at 50 years, November, 2013.
  4. N. Hatibu, H. F. Mahoo, E. M. Senkondo et al., “Strategies for soil-water management for dryland crop production in semi-arid Tanzania,” in Proceedings of Tanzania Society of Agricultural Engineers, vol. 6, pp. 83–97, 1993.
  5. T. L. Bucheyeki, E. M. Shenkalwa, T. X. Mapunda, and L. W. Matata, “Yield performance and adaptation of four sorghum cultivars in Igunga and Nzega districts of Tanzania,” Communications in biometry and crop science, vol. 5, no. 1, pp. 4–10, 2010. View at Google Scholar
  6. H. M. Saadan, M. A. Mgonja, and A. B. Obilana, Performance of the Sorghum Variety Macia in Multiple Environments in Tanzania, 2000.
  7. J. Mugwe, D. Mugendi, J. Kungu, and M.-M. Muna, “Maize yields response to application of organic and inorganic input under on-station and on-farm experiments in central Kenya,” Experimental Agriculture, vol. 45, no. 1, pp. 47–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. R. Stone and A. J. Schlegel, “Yield-water supply relationships of grain sorghum and winter wheat,” Agronomy Journal, vol. 98, no. 5, pp. 1359–1366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Traore, J. B. Auneb, and B. Traore, “Effect of organic manure to improve sorghum productivity in flood recession farming in Yelimane, Western Mali,” American Scientific Research Journal for Engineering, Technology, and Sciences, vol. 23, no. 1, pp. 232–251, 2016. View at Google Scholar
  10. N. Batisani and B. Yarnal, “Rainfall variability and trends in semi-arid Botswana: implications for climate change adaptation policy,” Applied Geography, vol. 30, no. 4, pp. 483–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Lázaro, F. S. Rodrigo, L. Gutiérrez, F. Domingo, and J. Puigdefábregas, “Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE spain for implications on vegetation,” Journal of Arid Environments, vol. 48, no. 3, pp. 373–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Matthews, W. Stephens, T. Hess, T. Middleton, and A. Graves, “Applications of crop/soil simulation models in tropical agricultural systems,” Advances in agronomy, vol. 76, pp. 31–124, 2002. View at Google Scholar
  13. B. M. Msongaleli, Assessment of the impacts of climate variability and change on rainfed cereal crop productivity in central Tanzania [Ph.D. dissertation], Sokoine University of Agriculture, Morogoro, Tanzania, 2015.
  14. B. A. Keating, P. S. Carberry, G. L. Hammer et al., “An overview of APSIM, a model designed for farming systems simulation,” European Journal of Agronomy, vol. 18, no. 3-4, pp. 267–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. MacCarthy and P. L. G. Vlek, “Impact of climate change on sorghum production under different nutrient and crop residue management in semi-arid region of Ghana: a modelling perspective,” African Crop Science Journal, vol. 20, pp. 243–259, 2012. View at Google Scholar
  16. W. Mupangwa, J. Dimes, S. Walker, and S. Twomlow, “Measuring and simulating maize (Zea mays L.) yield responses to reduced tillage and mulching under semi-arid conditions,” Agricultural Sciences, vol. 2, no. 3, pp. 167–174, 2011. View at Publisher · View at Google Scholar
  17. A. C. Guzha, “Effects of tillage on soil microrelief, surface depression storage and soil water storage,” Soil and Tillage Research, vol. 76, no. 2, pp. 105–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Stern, D. Rijks, I. Dale, and J. Knock, INSTAT (Interactive Statistics) Climate Guide, 2006.
  19. N. I. Kihupi, A. K. P. R. Tarimo, and H. O. Dihenga, “Spatial and temporal variation of growing season characteristics in Tanzania,” Journal of the Geographical Association of Tanzania, vol. 32, pp. 33–49, 2007. View at Google Scholar
  20. D. Mazvimavi, “Investigating changes over time of annual rainfall in Zimbabwe,” Hydrology and Earth System Sciences, vol. 14, no. 12, pp. 2671–2679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Hadgu, K. Tesfaye, G. Mamo, and B. Kassa, “Trend and variability of rainfall in Tigray, Northern Ethiopia: analysis of meteorological data and farmers' perception,” Academia Journal of Agricultural Research, vol. 1, pp. 88–100, 2013. View at Google Scholar
  22. K. Yenigun, V. Gumus, and H. Bulut, “Trends in streamflow of the Euphrates basin, Turkey,” Proceedings of the Institution of Civil Engineers: Water Management, vol. 161, no. 4, pp. 189–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Ncube, J. P. Dimes, M. T. van Wijk, S. J. Twomlow, and K. E. Giller, “Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south-western Zimbabwe: unravelling the effects of water and nitrogen using a simulation model,” Field Crops Research, vol. 110, no. 2, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Whitbread, M. J. Robertson, P. S. Carberry, and J. P. Dimes, “How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa,” European Journal of Agronomy, vol. 32, no. 1, pp. 51–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. J. Mkoga, S. D. Tumbo, N. Kihupi, and J. Semoka, “Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 35, no. 13-14, pp. 686–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Jones and J. Kiniry, CERES-Maize: A Simulation Model of Maize Growth and Development, Texas A & M University Press, College station, TX, USA, 1986.
  27. M. Kouressy, M. Dingkuhn, M. Vaksmann, and A. B. Heinemann, “Adaptation to diverse semi-arid environments of sorghum genotypes having different plant type and sensitivity to photoperiod,” Agricultural and Forest Meteorology, vol. 148, no. 3, pp. 357–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. T. Ritchie, “Soil water balance and plant water stress,” in Understanding Options for Agricultural Production, Y. Tsuji, Y. Gordon, Gerrit Hoogenboom, and Philip. K. Thornton, Eds., pp. 45–58, Kluwer Academic, Dodrecht, The Netherlands, 1998. View at Google Scholar
  29. K. E. Saxton, W. J. Rawls, J. S. Romberger, and R. I. Papendick, “Estimating generalized soil-water characteristics from texture,” Soil Science Society of America Journal, vol. 50, no. 4, pp. 1031–1036, 1986. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Chikowo, Climatic Risk Analysis in Conservation Agriculture in Varied Biophysical and Socio-Economic Settings of Southern Africa, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2011.
  31. J. Hussein, “A review of methods for determining available water capacities of soils and description of an improved method for estimating field capacity,” Zimbabwe Journal of Agricultural Research, vol. 21, pp. 73–87, 1983. View at Google Scholar
  32. J. Rurinda, P. Mapfumo, M. T. van Wijk et al., “Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk,” European Journal of Agronomy, vol. 55, pp. 29–41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Pierce, A. M. Mbwaga, G. Ley et al., Chemical Characteristics of Soil And Sorghum from Striga-Infested Regions of Tanzania, and The Influence of Fertiliser Application, University of Sheffield, Sheffield, UK, 2003.
  34. D. Wallach, “Evaluating crop models,” in Working with Dynamic Crop Models Evaluation, Analysis, Parameterization, and Applications, D. Wallach, D. Makowski, and J. W. Jones, Eds., pp. 11–54, Elsevier, Amsterdam, The Netherlands, 2006. View at Google Scholar
  35. C. J. Willmott, S. G. Ackleson, R. E. Davis et al., “Statistics for the evaluation and comparison of models,” Journal of Geophysical Research, vol. 90, pp. 8995–9005, 1985. View at Publisher · View at Google Scholar
  36. S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, “A trend-preserving bias correction—the ISI-MIP approach,” Earth System Dynamics, vol. 4, no. 2, pp. 219–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Riahi, A. Grübler, and N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technological Forecasting and Social Change, vol. 74, no. 7, pp. 887–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. K. T. Munishi, “Analysis of climate change and its impacts on productive sectors, particularly agriculture in Tanzania,” Tech. Rep., Ministry of Finance and Economic Affairs, 2009. View at Google Scholar
  39. P. Camberlin and R. E. Okoola, “The onset and cessation of the ‘long rains’ in Eastern Africa and their interannual variability,” Theoretical Applied Climatology, vol. 75, pp. 43–54, 2003. View at Google Scholar · View at Scopus
  40. M. A. Lema and A. E. Majule, “Impacts of climate change, variability and adaptation strategies on agriculture in semi-arid areas of Tanzania: the case of Manyoni District in Singida Region, Tanzania,” African Journal of Environmental Science and Technology, vol. 3, no. 8, pp. 206–218, 2009. View at Google Scholar
  41. G. A. Baigorria, J. W. Jones, D. W. Shin, A. Mishra, and J. J. O'Brien, “Assessing uncertainties in crop model simulations using daily bias-corrected regional circulation model outputs,” Climate Research, vol. 34, pp. 211–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. G. S. Premachandra, D. T. Hahn, and R. J. Joly, “Leaf water relations and gas exchange in two grain sorghum genotypes differing in their pre- and post-flowering drought tolerance,” Journal of Plant Physiology, vol. 143, no. 1, pp. 96–101, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. N. C. Turner and K. P. C. Rao, “Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures,” Agricultural Systems, vol. 121, pp. 53–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Zinyengere, O. Crespo, S. Hachigonta, and M. Tadross, “Local impacts of climate change and agronomic practices on dry land crops in Southern Africa,” Agriculture, Ecosystems and Environment, vol. 197, pp. 1–10, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. E. I. Enfors, L. J. Gordon, G. D. Peterson, and D. Bossio, “Making investments in dryland development work: participatory scenario planning in the Makanya catchment, Tanzania,” Ecology and Society, vol. 13, no. 2, p. 42, 2008. View at Google Scholar · View at Scopus