Table of Contents
International Scholarly Research Notices
Volume 2017 (2017), Article ID 9501675, 7 pages
https://doi.org/10.1155/2017/9501675
Research Article

Antioxidant and Synergistic Antidiabetic Activities of a Three-Plant Preparation Used in Cameroon Folk Medicine

1Laboratory of Biochemistry, Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon
2Department of Biochemistry, Faculty of Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon

Correspondence should be addressed to Constant Anatole Pieme

Received 17 December 2016; Revised 17 February 2017; Accepted 2 March 2017; Published 26 April 2017

Academic Editor: Tzi Bun Ng

Copyright © 2017 Bruno Moukette Moukette et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Schwartz, S. Epstein, B. E. Corkey, S. F. A. Grant, J. R. Gavin, and R. B. Aguilar, “The time is right for a new classification system for diabetes: rationale and implications of the β-cell-centric classification schema,” Diabetes Care, vol. 39, no. 2, pp. 179–186, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. IDF, International Diabetes Federation. IDF Diabetes, International Diabetes Federation, Brussels, Belgium, 7th edition, 2015.
  3. S. S. Patel, “Cerebrovascular complications of diabetes: alpha glucosidase inhibitor as potential therapy,” Hormone and Metabolic Research, vol. 48, no. 2, pp. 83–91, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Li, H. Xu, S. Cui et al., “Discovery and rational design of natural-product-derived 2-phenyl-3,4-dihydro-2H-benzo[f]chromen-3-amine analogs as novel and potent dipeptidyl peptidase 4 (DPP-4) inhibitors for the treatment of type 2 diabetes,” Journal of Medicinal Chemistry, vol. 59, no. 14, pp. 6772–6790, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. P. D. Dzeufiet Djomeni, F. Ngeutse Donfouet, T. Dimo et al., “Hypoglycemic and hypolipidemic effects of Ivingia gabonensis (Irvingiaceae) in diabetic rats,” Pharmacologyonline, vol. 2, pp. 957–962, 2009. View at Google Scholar · View at Scopus
  6. I. G. M. Ndifossap, F. Frigerio, M. Casimir et al., “Sclerocarya birrea (Anacardiaceae) stem-bark extract corrects glycaemia in diabetic rats and acts on β-cells by enhancing glucose-stimulated insulin secretion,” Journal of Endocrinology, vol. 205, no. 1, pp. 79–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Ulrich-Merzenich, D. Panek, H. Zeitler, H. Vetter, and H. wagner, “Drug development from natural products: exploiting synergistic effects,” Indian Journal of Experimental Biology, vol. 48, no. 3, pp. 208–219, 2010. View at Google Scholar · View at Scopus
  8. A. B. Scholey and D. O. Kennedy, “Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand,” Human Psychopharmacology, vol. 17, no. 1, pp. 35–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Petchi, C. Vijaya, and S. Parasuraman, “Antidiabetic activity of polyherbal formulation in streptozotocin-Nicotinamide induced diabetic wistar rats,” Journal of Traditional and Complementary Medicine, vol. 4, no. 2, pp. 108–117, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. E. M. Williamson, “Synergy and other interactions in phytomedicines,” Phytomedicine, vol. 8, no. 5, pp. 401–409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Gao, Q. Li, and Y. Fan, “Hypoglycemic effects and mechanisms of Portulaca oleracea L. in alloxan-induced diabetic rats,” Journal of Medicinal Plants Research, vol. 4, no. 19, pp. 1996–2003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Lee, Y. J. Lee, S. M. Lee et al., “Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 741824, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Dkhil, A. E. A. Moniem, S. Al-Quraishy, and R. A. Saleh, “Antioxidant effect of purslane (Portulaca oleracea) and its mechanism of action,” Journal of Medicinal Plants Research, vol. 5, no. 9, pp. 1589–1593, 2011. View at Google Scholar · View at Scopus
  14. A. Nakhaee, M. Bokaeian, M. Saravani, A. Farhangi, and A. Akbarzadeh, “Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus,” Indian Journal of Clinical Biochemistry, vol. 24, no. 4, pp. 419–425, 2009. View at Google Scholar
  15. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Journal of Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  16. P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity,” Songklanakarin Journal of Science and Technology, vol. 26, no. 2, pp. 211–219, 2004. View at Google Scholar
  17. Y. Wenli, Z. Yaping, and S. Bo, “The radical scavenging activities of radix puerariae isoflavonoids: A Chemiluminescence Study,” Food Chemistry, vol. 86, no. 4, pp. 525–529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Oyaizu, “Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine,” The Japanese Journal of Nutrition and Dietetics, vol. 44, no. 6, pp. 307–315, 1986. View at Publisher · View at Google Scholar
  19. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Meliani, M. E. A. Dib, H. Allali, and B. Tabti, “Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 6, pp. 468–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Sharma, M. Vijayakumar, C. V. Rao, M. K. Unnikrishnan, and G. D. Reddy, “Action of Portulaca oleracea against streptozotocin-induced oxidative stress in experimental diabetic rats,” Journal of Complementary and Integrative Medicine, vol. 6, no. 1, article 1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Dhalwal, V. M. Shinde, B. Singh, and K. R. Mahadik, “Hypoglycemic and hypolipidemic effect of Sida rhombifolia ssp. retusa in diabetic induced animals,” International Journal of Phytomedicine, vol. 2, no. 2, pp. 160–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Oyedemi, E. A. Adewusi, O. A. Aiyegoro, and D. A. Akinpelu, “Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin-induced diabetic Wistar rats,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 5, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Prachayasittikul, S. Suphapong, A. Worachartcheewan, R. Lawung, S. Ruchirawat, and V. Prachayasittikul, “Bioactive metabolites from Spilanthes acmella Murr,” Molecules, vol. 14, no. 2, pp. 850–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y.-X. Zhou, H.-L. Xin, K. Rahman, S.-J. Wang, C. Peng, and H. Zhang, “Portulaca oleracea L.: a review of phytochemistry and pharmacological effects,” BioMed Research International, vol. 2015, Article ID 925631, 11 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Das, P. Debta, D. Das, and G. Ghosh, “Cytomorphological and physico-chemical studies of Sida rhombifolia,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 10, pp. 46–56, 2015. View at Google Scholar · View at Scopus
  27. S. Das, S. Bhattacharya, A. Prasanna, R. B. S. Kumar, G. Pramanik, and P. K. Haldar, “Preclinical evaluation of antihyperglycemic activity of Clerodendron infortunatum leaf against streptozotocin-induced diabetic rats,” Diabetes Therapy, vol. 2, no. 2, pp. 92–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. E.-O. Atawodi, O. E. Yakubu, M. L. Liman, and D. U. Iliemene, “Effect of methanolic extract of Tetrapleura tetraptera (Schum and Thonn) Taub leaves on hyperglycemia and indices of diabetic complications in alloxan-induced diabetic rats,” Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. 4, pp. 272–278, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Kumarappan and S. C. Mandal, “Polyphenol extract of ichnocarpus frutescens leaves modifies hyperglycemia in dexamethasone (dex) treated rats,” Indian Journal of Physiology and Pharmacology, vol. 58, no. 4, pp. 441–445, 2014. View at Google Scholar · View at Scopus
  30. P. Yin, S. Zhao, S. Chen et al., “Hypoglycemic and hypolipidemic effects of polyphenols from burs of castanea mollissima blume,” Molecules, vol. 16, no. 11, pp. 9764–9774, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Mehta, R. Balaraman, A. H. Amin, P. A. Bafna, and O. D. Gulati, “Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits,” Journal of Ethnopharmacology, vol. 86, no. 2-3, pp. 191–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. R. Rasekh, P. Nazari, M. Kamli-Nejad, and L. Hosseinzadeh, “Acute and subchronic oral toxicity of Galega officinalis in rats,” Journal of Ethnopharmacology, vol. 116, no. 1, pp. 21–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. El-Newary, “The hypolipidemic effect of Portulaca oleracea L. stem on hyperlipidemic Wister Albino rats,” Annals of Agricultural Sciences, vol. 61, no. 1, pp. 111–124, 2016. View at Publisher · View at Google Scholar
  34. A. Sepici-Dincel, Ş. Açikgöz, C. Çevik, M. Sengelen, and E. Yeşilada, “Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits,” Journal of Ethnopharmacology, vol. 110, no. 3, pp. 498–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Ghosh and S. A. Suryawanshi, “Effect of Vinca rosea extracts in treatment of alloxan diabetes in male albino rats,” Indian Journal of Experimental Biology, vol. 39, no. 8, pp. 748–759, 2001. View at Google Scholar · View at Scopus
  36. Y. Kajimoto and H. Kaneto, “Role of oxidative stress in pancreatic β-cell dysfunction,” Annals of the New York Academy of Sciences, vol. 1011, pp. 168–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. M. Moukette, A. C. Pieme, P. C. N. Biapa et al., “In vitro ion chelating, antioxidative mechanism of extracts from fruits and barks of Tetrapleura tetraptera and their protective effects against fenton mediated toxicity of metal ions on liver homogenates,” Evidence-based Complementary and Alternative Medicine, vol. 2015, Article ID 423689, 14 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Moukette Moukette, C. A. Pieme, P. C. Nya Biapa, and J. Y. Ngogang, “In vitro antioxidant and anti-lipoperoxidative activities of bark extracts of Xylopia aethiopica against ion-mediated toxicity on liver homogenates,” Journal of Complementary and Integrative Medicine, vol. 12, no. 3, pp. 195–204, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. B. M. Moukette, C. A. Pieme, J. R. Njimou, C. P. N. Biapa, B. Marco, and J. Y. Ngogang, “In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: monodora myristica,” Biological Research, vol. 48, no. 1, p. 15, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Ebrahimzadeh, F. Pourmorad, and S. Hafezi, “Antioxidant activities of iranian corn silk,” Turkish Journal of Biology, vol. 32, no. 1, pp. 43–49, 2008. View at Google Scholar · View at Scopus
  41. A. Mujić, N. Grdović, I. Mujić et al., “Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells,” Food Chemistry, vol. 125, no. 3, pp. 841–849, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. X.-K. Zheng, L. Zhang, W.-W. Wang, Y.-Y. Wu, Q.-B. Zhang, and W.-S. Feng, “Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 662–668, 2011. View at Publisher · View at Google Scholar · View at Scopus