Table of Contents
Journal of Allergy
Volume 2011 (2011), Article ID 238513, 8 pages
http://dx.doi.org/10.1155/2011/238513
Research Article

Allergic Potential and Immunotoxicity Induced by Topical Application of 1-Chloro-4-(Trifluoromethyl)Benzene (PCBTF) in a Murine Model

Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Drive, Morgantown, WV 26505-2888, USA

Received 11 January 2011; Accepted 11 March 2011

Academic Editor: Gordon L. Sussman

Copyright © 2011 Jennifer Franko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. NTP, National Toxicology Program, Chemical Information Profile for 1-Chloro-4-(trifluoromethyl)benzene. National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA, 2009.
  2. HSDB, “Hazardous Substances Data Bank. 1-Chloro-4-(trifluoromethyl)benzene,” HSDB Record No. 4251, February 2003, http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~CkwdFP:4.
  3. J. J. Maul, P. J. Ostrowski, G. A. Ublacker, B. Linclau, and D. P. Curran, “Benzotrifluoride and derivatives: useful solvents for organic synthesis and fluorosynthesis,” Topics in Current Chemistry, vol. 206, pp. 79–105, 1999. View at Google Scholar
  4. EPA, U.S., “National volatile organic comound emissin standards for aerosol coatings,” Federal Register, vol. 74, no. 62, pp. 14941–14949, 2009. View at Google Scholar
  5. OCC, Occidental Chemical Corporation. Initial submission: mortality patterns of workers int he Niagara Plant (final report on mixtures of chemical substances) with attachments and cover letter dated 022192. TSCATS [Unpublished Health and Safety Studies submitted to EPA]. U.S. EPA/OPTS Public Files. Microfiche No. 0537001. Document No. 88-920001103. Record from Biblioline Basic, ECIS Record ID: TS-045214; abstract from TSCATS Low Detail Report link available at U.S. EPA, 1983, http://yosemite.epa.gov/oppts/epatscat8.nsf/ReportSearchView/915F0B8E49E020F185257252006EAB2A.
  6. P. E. Newton, H. F. Bolte, W. R. Richter, M. B. Akinsanya, J. B. Knaak, and L. W. Smith, “Inhalation toxicity, neurotoxicity, and toxicokinetic studies of p-chlorobenzotrifluoride,” Inhalation Toxicology, vol. 10, no. 1, pp. 33–48, 1998. View at Google Scholar · View at Scopus
  7. Hooker Chemical Company, “Acute oral toxicity (LD50) in albine rats,” TSCATS [Unpublished Health and Safety Studies submitted to EPA]. U.S. EPA/OPTS Public Files. Microfiche No. 0508138. Document No. 40-7952012, 1979.
  8. A. Macri, C. Ricciardi, A. V. Stazi et al., “Subchronic oral toxicity of 4-chloro-alpha, alpha, alpha-trifluorotoluene in Sprague-Dawley rats,” Food and Chemical Toxicology, vol. 25, no. 10, pp. 781–786, 1987. View at Google Scholar · View at Scopus
  9. K. J. Klink and B. J. Meade, “Dermal exposure to 3-amino-5-mercapto-1,2,4-triazole (AMT) induces sensitization and airway hyperreactivity in BALB/c mice,” Toxicological Sciences, vol. 75, no. 1, pp. 89–98, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. R. Woolhiser, A. E. Munson, and B. J. Meade, “Comparison of mouse strains using the local lymph node assay,” Toxicology, vol. 146, no. 2-3, pp. 221–227, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. Luster, C. Portier, D. G. Pait et al., “Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests,” Fundamental and Applied Toxicology, vol. 18, no. 2, pp. 200–210, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. NIEHS, “National Institute of Environmental Health Sciences; the murine local lymph node assay: a test method for assessing the allergic contact dermatitis potential of chemicals/compounds,” Federal Register, vol. 64, pp. 14006–14007, 1999. View at Google Scholar
  13. M. R. Woolhiser, A. E. Munson, and B. J. Meade, “Role of sensitization routes in the development of type I hypersensitivity to natural rubber latex in mice,” American Journal of Industrial Medicine, vol. 36, no. 1, pp. 139–141, 1999. View at Google Scholar · View at Scopus
  14. D. A. Basketter, L. J. Lea, A. Dickens et al., “A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose responses,” Journal of Applied Toxicology, vol. 19, no. 4, pp. 261–266, 1999. View at Google Scholar · View at Scopus
  15. T. S. Manetz and B. J. Meade, “Development of a flow cytometry assay for the identification and differentiation of chemicals with the potential to elicit irritation, IgE- mediated, or T cell-mediated hypersensitivity responses,” Toxicological Sciences, vol. 48, no. 2, pp. 206–217, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Butler, “Enzyme-linked immunosorbent assay,” Journal of Immunoassay, vol. 21, no. 2-3, pp. 165–209, 2000. View at Google Scholar · View at Scopus
  17. N. K. Jerne and A. A. Nordin, “Plaque formation in agar by single antibody-producing cells,” Science, vol. 140, no. 3565, p. 405, 1963. View at Google Scholar · View at Scopus
  18. B. D. Lushniak, “The importance of occupational skin diseases in the United States,” International Archives of Occupational and Environmental Health, vol. 76, no. 5, pp. 325–330, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. A. Burnett, B. D. Lushniak, W. McCarthy, and J. Kaufman, “Occupational dermatitis causing days away from work in U.S. private industry, 1993,” American Journal of Industrial Medicine, vol. 34, no. 6, pp. 568–573, 1998. View at Google Scholar · View at Scopus
  20. D. Botta and E. Mantica, “Micropollutants migration from ion-exchange resins into water,” Water Research, vol. 33, no. 4, pp. 1054–1064, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. EPA, U.S., “4-chlorobenzotrifluoride; decision not to test,” Federal Register, vol. 50, no. 292, pp. 42216–42221, 1985. View at Google Scholar
  22. M. P. Yurawecz, “Gas-liquid chromatographic and mass spectrometric indentification of chlorinated trifluorotoluene residues in Niagara River fish,” Journal of the Association of Official Analytical Chemists, vol. 62, no. 1, pp. 36–40, 1979. View at Google Scholar · View at Scopus
  23. NIOSH, “Control of Exposure to Perchloroethylene in Commercial Drycleaning,” Hazard Controls: Publication 97-157. National Institute for Occupational Safety and Health, 1997, http://www.cdc.gov/niosh/hc19.html.
  24. R. O. Recknagel, “Carbon tetrachloride hepatotoxicity,” Pharmacological Reviews, vol. 19, no. 2, pp. 145–208, 1967. View at Google Scholar · View at Scopus
  25. K. M. Gilbert, J. M. Griffin, and N. R. Pumford, “Trichloroethylene activates CD4+ T cells: potential role in an autoimmune response,” Drug Metabolism Reviews, vol. 31, no. 4, pp. 901–916, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. M. Griffen, S. J. Blossom, S. K. Jackson, K. M. Gilbert, and N. R. Pumford, “Triethylen accelerates an autoimmune response by Th1 T cell actiation in MRL+/+ mice,” Immunopharmacology, vol. 46, pp. 123–137, 2000. View at Google Scholar
  27. J. M. Griffin, K. M. Gilbert, L. W. Lamps, and N. R. Pumford, “CD4 T-cell activation and induction of autoimmune hepatitis following trichloroethylene treatment in MRL+/+ mice,” Toxicological Sciences, vol. 57, no. 2, pp. 345–352, 2000. View at Google Scholar · View at Scopus
  28. I. Iavicoli, A. Marinaccio, and G. Carelli, “Effects of occupational trichloroethylene exposure on cytokine levels in workers,” Journal of Occupational and Environmental Medicine, vol. 47, no. 5, pp. 453–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. G. S. Cooper, S. L. Makris, P. J. Nietert, and J. Jinot, “Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans,” Environmental Health Perspectives, vol. 117, no. 5, pp. 696–702, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. Seo, T. Yamagiwa, R. Kobayashi et al., “A small amount of tetrachloroethylene ingestion from drinking water accelerates antigen-stimulated allergic responses,” Immunobiology, vol. 213, no. 8, pp. 663–669, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. Jírová, I. Šperlingová, M. Halašková, H. Bendová, and L. Dabrowská, “Immunotoxic effects of carbon tetrachloride—the effect on morphology and function of the immune system in mice,” Central European Journal of Public Health, vol. 4, no. 1, pp. 16–20, 1996. View at Google Scholar · View at Scopus