Table of Contents
Journal of Allergy
Volume 2011, Article ID 424203, 10 pages
http://dx.doi.org/10.1155/2011/424203
Review Article

The LLNA: A Brief Review of Recent Advances and Limitations

Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Drive, Morgantown, WV 26505, USA

Received 16 February 2011; Accepted 31 March 2011

Academic Editor: Gordon L. Sussman

Copyright © 2011 Stacey E. Anderson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Basketter, “The human repeated insult patch test in the 21st century: a commentary,” Cutaneous and Ocular Toxicology, vol. 28, no. 2, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at PubMed
  2. I. Kimber, J. Hilton, and C. Weisenberger, “The murine local lymph node assay for identification of contact allergens: a preliminary evaluation of in situ measurement of lymphocyte proliferation,” Contact Dermatitis, vol. 21, no. 4, pp. 215–220, 1989. View at Google Scholar
  3. J. H. Dean, L. E. Twerdok, R. R. Tice, D. M. Sailstad, D. G. Hattan, and W. S. Stokes, “ICCVAM evaluation of the murine local lymph node assay: II. Conclusions and recommendations of an independent scientific peer review panel,” Regulatory Toxicology and Pharmacology, vol. 34, no. 3, pp. 258–273, 2001. View at Publisher · View at Google Scholar · View at PubMed
  4. ICCVAM, “Interagency Coordinating Committee on the Validation of Alternative Methods. The Murine Local Lymph Node Assay: a test method for assessing the allergic contact dermatitis potential of chemicals/compounds. The results of an independent peer review evaluation coordinated by the ICCVAM an the NICEATM,” National Institute of Environmental Health Sciences, NIH Publication no. 99-4494, http://www.iccvam.niehs.nih.gov/.
  5. H. Spielmann, L. Muller, D. Averbeck et al., “The second ECVAM workshop on phototoxicity testing: the report and recommendations of ECVAM workshop 42,” Alternatives to Laboratory Animals, vol. 28, no. 6, pp. 777–814, 2000. View at Google Scholar
  6. A. Cockshott, P. Evans, C. A. Ryan et al., “The local lymph node assay in practice: a current regulatory perspective,” Human and Experimental Toxicology, vol. 25, no. 7, pp. 387–394, 2006. View at Publisher · View at Google Scholar
  7. U. EPA, “Health effects Test Guidelines,” OPPTS 870.2600 Skin Sensitization, 2003.
  8. C. Albanesi, “Keratinocytes in allergic skin diseases,” Current Opinion in Allergy and Clinical Immunology, vol. 10, no. 5, pp. 452–456, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. D. A. Basketter, G. F. Gerberick, I. Kimber, and S. E. Loveless, “The local lymph node assay: a viable alternative to currently accepted skin sensitization tests,” Food and Chemical Toxicology, vol. 34, no. 10, pp. 985–997, 1996. View at Publisher · View at Google Scholar
  10. I. Kimber and M. Cumberbatch, “Dendritic cells and cutaneous immune responses to chemical allergens,” Toxicology and Applied Pharmacology, vol. 117, no. 2, pp. 137–146, 1992. View at Publisher · View at Google Scholar
  11. J. Oort and J. L. Turk, “A histological and autoradiographic study of lymph nodes during the development of contact sensitivity in the guinea-pig,” British Journal of Experimental Pathology, vol. 46, pp. 147–154, 1965. View at Google Scholar
  12. OECD, Testing Guideline 429. Skin Sensitization: Local Lymph Node Assay. Updated Guideline, Adopted 24th April 2002, Organisation for Economic Co-operation and Development, Paris, France, 2002.
  13. OECD, Testing Guideline 406. Skin Sensitization: Updated Guideline, Adopted 17th July 1992, Organisation for Economic Co-operation and Development, Paris, France, 1992.
  14. S. E. Loveless, A. M. Api, R. W. Crevel et al., “Potency values from the local lymph node assay: application to classification, labelling and risk assessment,” Regulatory Toxicology and Pharmacology, vol. 56, no. 1, pp. 54–66, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. D. A. Basketter, L. J. Lea, K. Cooper et al., “Threshold for classification as a skin sensitizer in the local lymph node assay: a statistical evaluation,” Food and Chemical Toxicology, vol. 37, no. 12, pp. 1167–1174, 1999. View at Publisher · View at Google Scholar
  16. R. J. Dearman, J. Hilton, P. Evans, P. Harvey, D. A. Basketter, and I. Kimber, “Temporal stability of local lymph node assay responses to hexyl cinnamic aldehyde,” Journal of Applied Toxicology, vol. 18, no. 4, pp. 281–284, 1998. View at Publisher · View at Google Scholar
  17. S. E. Loveless, G. S. Ladics, G. F. Gerberick et al., “Further evaluation of the local lymph node assay in the final phase of an international collaborative trial,” Toxicology, vol. 108, no. 1-2, pp. 141–152, 1996. View at Publisher · View at Google Scholar
  18. E. V. Warbrick, R. J. Dearman, L. J. Lea, D. A. Basketter, and I. Kimber, “Local lymph node assay responses to paraphenylenediamine: intra- and inter-laboratory evaluations,” Journal of Applied Toxicology, vol. 19, no. 4, pp. 255–260, 1999. View at Publisher · View at Google Scholar
  19. I. Kimber, R. J. Dearman, D. A. Basketter, C. A. Ryan, and G. F. Gerberick, “The local lymph node assay: past, present and future,” Contact Dermatitis, vol. 47, no. 6, pp. 315–328, 2002. View at Publisher · View at Google Scholar
  20. ECETOC, “Contact sensitisation: classification according to potency,” Technical Report 87, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium, 2003. View at Google Scholar
  21. D. A. Basketter, C. Clapp, D. Jefferies et al., “Predictive identification of human skin sensitization thresholds,” Contact Dermatitis, vol. 53, no. 5, pp. 260–267, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. D. A. Basketter, G. F. Gerberick, and I. Kimber, “Measurement of allergenic potency using the local lymph node assay,” Trends in Pharmacological Sciences, vol. 22, no. 6, pp. 264–265, 2001. View at Publisher · View at Google Scholar
  23. G. F. Gerberick, M. K. Robinson, C. A. Ryan et al., “Contact allergenic potency: correlation of human and local lymph node assay data,” American Journal of Contact Dermatitis, vol. 12, no. 3, pp. 156–161, 2001. View at Publisher · View at Google Scholar · View at PubMed
  24. P. Griem, C. Goebel, and H. Scheffler, “Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data,” Regulatory Toxicology and Pharmacology, vol. 38, no. 3, pp. 269–290, 2003. View at Publisher · View at Google Scholar
  25. K. Schneider and Z. Akkan, “Quantitative relationship between the local lymph node assay and human skin sensitization assays,” Regulatory Toxicology and Pharmacology, vol. 39, no. 3, pp. 245–255, 2004. View at Publisher · View at Google Scholar · View at PubMed
  26. C. J. Betts, R. J. Dearman, J. R. Heylings, I. Kimber, and D. A. Basketter, “Skin sensitization potency of methyl methacrylate in the local lymph node assay: comparisons with guinea-pig data and human experience,” Contact Dermatitis, vol. 55, no. 3, pp. 140–147, 2006. View at Publisher · View at Google Scholar · View at PubMed
  27. D. A. Basketter, J. F. McFadden, F. Gerberick, A. Cockshott, and I. Kimber, “Nothing is perfect, not even the local lymph node assay: a commentary and the implications for REACH,” Contact Dermatitis, vol. 60, no. 2, pp. 65–69, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. D. Zaghi and H. I. Maibach, “The local lymph node assay compared with the human maximization test as an indicator of allergic potency in humans using patch test clinic populations,” Cutaneous and Ocular Toxicology, vol. 28, no. 2, pp. 61–64, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. A. Garnett, S. A. Hotchkiss, and J. Caldwell, “Percutaneous absorption of benzyl acetate through rat skin in vitro. 3. A comparison with human skin,” Food and Chemical Toxicology, vol. 32, no. 11, pp. 1061–1065, 1994. View at Publisher · View at Google Scholar
  30. A. Mint, S. A. Hotchkiss, and J. Caldwell, “Percutaneous absorption of diethyl phthalate through rat and human skin in vitro,” Toxicology in Vitro, vol. 8, no. 2, pp. 251–256, 1994. View at Publisher · View at Google Scholar
  31. D. A. Basketter, E. W. Scholes, and I. Kimber, “The performance of the local lymph node assay with chemicals identified as contact allergens in the human maximization test,” Food and Chemical Toxicology, vol. 32, no. 6, pp. 543–547, 1994. View at Publisher · View at Google Scholar
  32. D. A. Basketter, J. Miettinen, and A. Lahti, “Acute irritant reactivity to sodium lauryl sulfate in atopics and non-atopics,” Contact Dermatitis, vol. 38, no. 5, pp. 253–257, 1998. View at Publisher · View at Google Scholar
  33. M. Cumberbatch, R. C. Scott, D. A. Basketter et al., “Influence of sodium lauryl sulphate on 2,4-dinitrochlorobenzene-induced lymph node activation,” Toxicology, vol. 77, no. 1-2, pp. 181–191, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Montelius, H. Wahlkvist, A. Boman, P. Fernstrom, L. Grabergs, and J. E. Wahlberg, “Experience with the murine local lymph node assay: inability to discriminate between allergens and irritants,” Acta Dermato-Venereologica, vol. 74, no. 1, pp. 22–27, 1994. View at Google Scholar
  35. R. J. Dearman, D. A. Basketter, and I. Kimber, “Local lymph node assay: use in hazard and risk assessment,” Journal of Applied Toxicology, vol. 19, no. 5, pp. 299–306, 1999. View at Publisher · View at Google Scholar
  36. J. Montelius, H. Wahlkvist, A. Boman, and J. E. Wahlberg, “Murine local lymph node assay for predictive testing of allergenicity: two irritants caused significant proliferation,” Acta Dermato-Venereologica, vol. 78, no. 6, pp. 433–437, 1998. View at Publisher · View at Google Scholar
  37. R. Kreiling, H. M. Hollnagel, L. Hareng et al., “Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT),” Food and Chemical Toxicology, vol. 46, no. 6, pp. 1896–1904, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. D. A. Basketter and I. Kimber, “Skin sensitization, false positives and false negatives: experience with guinea pig assays,” Journal of Applied Toxicology, vol. 30, no. 5, pp. 381–386, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. J. E. Wahlberg and A. Boman, “Prevention of contact dermatitis from solvents,” Current Problems in Dermatology, vol. 25, pp. 57–66, 1996. View at Google Scholar
  40. S. Aiba and S. I. Katz, “Phenotypic and functional characteristics of in vivo-activated Langerhans cells,” Journal of Immunology, vol. 145, no. 9, pp. 2791–2796, 1990. View at Google Scholar
  41. A. Coquette, N. Berna, A. Vandenbosch, M. Rosdy, B. De Wever, and Y. Poumay, “Analysis of interleukin-1aplha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization,” Toxicology in Vitro, vol. 17, no. 3, pp. 311–321, 2003. View at Publisher · View at Google Scholar
  42. E. Corsini, M. Mitjans, V. Galbiati, L. Lucchi, C. L. Galli, and M. Marinovich, “Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens,” Toxicology in Vitro, vol. 23, no. 5, pp. 789–796, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. R. J. Vandebriel, J. L. Pennings, K. A. Baken et al., “Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds,” Toxicological Sciences, vol. 117, no. 1, pp. 81–89, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. F. Straube, O. Grenet, P. Bruegger, and P. Ulrich, “Contact allergens and irritants show discrete differences in the activation of human monocyte-derived dendritic cells: consequences for in vitro detection of contact allergens,” Archives of Toxicology, vol. 79, no. 1, pp. 37–46, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. M. Cumberbatch, S. J. Gould, S. W. Peters, D. A. Basketter, R. J. Dearman, and I. Kimber, “Langerhans cells, antigen presentation, and the diversity of responses to chemical allergens,” Journal of Investigative Dermatology, vol. 99, no. 5, pp. 107S–108S, 1992. View at Google Scholar
  46. O. de Silva, M. J. Perez, N. Pineau, A. Rougier, and K. G. Dossou, “Local lymph node assay: study of the in vitro proliferation and control of the specificity of the response by FACScan analysis,” Toxicology in Vitro, vol. 7, no. 4, pp. 299–303, 1993. View at Publisher · View at Google Scholar
  47. G. F. Gerberick, L. W. Cruse, C. A. Ryan et al., “Use of a B cell marker (B220) to discriminate between allergens and irritants in the local lymph node assay,” Toxicological Sciences, vol. 68, no. 2, pp. 420–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. T. S. Manetz and B. J. Meade, “Development of a combined irritancy/phenotypic analysis assay for the identification and differentiation of chemicals with the potential to elicit irritation, IgE-mediated, or T cell mediated hypersensitivity responses,” American Journal of Industrial Medicine, vol. 36, supplement 1, pp. 136–138, 1999. View at Publisher · View at Google Scholar
  49. H. F. McGarry, “The murine local lymph node assay: regulatory and potency considerations under REACH,” Toxicology, vol. 238, no. 2-3, pp. 71–89, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. J. Montelius, A. Boman, H. Wahlkvist, and J. E. Wahlberg, “The murine local lymph node assay: search for an alternative, more adequate, vehicle than acetone/olive oil (4:1),” Contact Dermatitis, vol. 34, no. 6, pp. 428–430, 1996. View at Google Scholar
  51. D. A. Basketter and I. Kimber, “Olive oil: suitability for use as a vehicle in the local lymph node assay,” Contact Dermatitis, vol. 35, no. 3, pp. 190–191, 1996. View at Publisher · View at Google Scholar
  52. E. Adisen and M. Onder, “Allergic contact dermatitis from Laurus nobilis oil induced by massage,” Contact Dermatitis, vol. 56, no. 6, pp. 360–361, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Isaksson and M. Bruze, “Occupational allergic contact dermatitis from olive oil in a masseur,” Journal of the American Academy of Dermatology, vol. 41, no. 2, pp. 312–315, 1999. View at Google Scholar
  54. J. R. Heylings, H. M. Clowes, M. Cumberbatch et al., “Sensitization to 2,4-dinitrochlorobenzene: influence of vehicle on absorption and lymph node activation,” Toxicology, vol. 109, no. 1, pp. 57–65, 1996. View at Publisher · View at Google Scholar
  55. I. R. Jowsey, C. J. Clapp, B. Safford, B. T. Gibbons, and D. A. Basketter, “The impact of vehicle on the relative potency of skin-sensitizing chemicals in the local lymph node assay,” Cutaneous and Ocular Toxicology, vol. 27, no. 2, pp. 67–75, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. P. D. Siegel, A. Fedorowicz, L. Butterworth et al., “Physical-chemical and solvent considerations in evaluating the influence of carbon chain length on the skin sensitization activity of 1-bromoalkanes,” Toxicological Sciences, vol. 107, no. 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. J. H. Arts and C. F. Kuper, “Animal models to test respiratory allergy of low molecular weight chemicals: a guidance,” Methods, vol. 41, no. 1, pp. 61–71, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. R. J. Dearman, D. A. Basketter, and I. Kimber, “Characterization of chemical allergens as a function of divergent cytokine secretion profiles induced in mice,” Toxicology and Applied Pharmacology, vol. 138, no. 2, pp. 308–316, 1996. View at Publisher · View at Google Scholar · View at PubMed
  59. R. J. Dearman, E. V. Warbrick, R. Skinner, and I. Kimber, “Cytokine fingerprinting of chemical allergens: species comparisons and statistical analyses,” Food and Chemical Toxicology, vol. 40, no. 12, pp. 1881–1892, 2002. View at Publisher · View at Google Scholar
  60. S. Kondo, S. Pastore, G. M. Shivji, R. C. McKenzie, and D. N. Sauder, “Characterization of epidermal cytokine profiles in sensitization and elicitation phases of allergic contact dermatitis as well as irritant contact dermatitis in mouse skin,” Lymphokine and Cytokine Research, vol. 13, no. 6, pp. 367–375, 1994. View at Google Scholar
  61. S. C. Gad, B. J. Dunn, D. W. Dobbs, C. Reilly, and R. D. Walsh, “Development and validation of an alternative dermal sensitization test: the mouse ear swelling test (MEST),” Toxicology and Applied Pharmacology, vol. 84, no. 1, pp. 93–114, 1986. View at Google Scholar
  62. T. S. Manetz, D. A. Pettit, and B. J. Meade, “The determination of draining lymph node cell cytokine mRNA levels in BALB/c mice following dermal sodium lauryl sulfate, dinitrofluorobenzene, and toluene diisocyanate exposure,” Toxicology and Applied Pharmacology, vol. 171, no. 3, pp. 174–183, 2001. View at Publisher · View at Google Scholar · View at PubMed
  63. C. F. Kuper, W. H. Heijne, M. Dansen et al., “Molecular characterization of trimellitic anhydride-induced respiratory allergy in Brown Norway rats,” Toxicologic Pathology, vol. 36, no. 7, pp. 985–998, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. J. Pauluhn, “Brown Norway rat asthma model of diphenylmethane-4,4-diisocyanate (MDI): analysis of the elicitation dose-response relationship,” Toxicological Sciences, vol. 104, no. 2, pp. 320–331, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. X. D. Zhang, A. F. Hubbs, and P. D. Siegel, “Changes in asthma-like responses after extended removal from exposure to trimellitic anhydride in the Brown Norway rat model,” Clinical and Experimental Allergy, vol. 39, no. 11, pp. 1746–1753, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. OECD, Testing Guideline 429, 429A, 429B. Skin Sensitization: Local Lymph Node Assay. Updated Guideline, Adopted 22th July 2010, Organisation for Economic Co-operation and Development, Paris, France, 2010.
  67. M. Takeyoshi, K. Iida, K. Shiraishi, and S. Hoshuyama, “Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay,” Journal of Applied Toxicology, vol. 25, no. 2, pp. 129–134, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. K. Idehara, G. Yamagishi, K. Yamashita, and M. Ito, “Characterization and evaluation of a modified local lymph node assay using ATP content as a non-radio isotopic endpoint,” Journal of Pharmacological and Toxicological Methods, vol. 58, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. I. Kimber, R. J. Dearman, C. J. Betts et al., “The local lymph node assay and skin sensitization: a cut-down screen to reduce animal requirements?” Contact Dermatitis, vol. 54, no. 4, pp. 181–185, 2006. View at Google Scholar
  70. C. A. Ryan, J. G. Chaney, P. S. Kern et al., “The reduced local lymph node assay: the impact of group size,” Journal of Applied Toxicology, vol. 28, no. 4, pp. 518–523, 2008. View at Publisher · View at Google Scholar · View at PubMed
  71. ICCVAM, “Interagency Coordinating Committee on the Validation of Alternative Methods. ICCVAM Test Method Evulation Report on Using the Local Lymph Node Assay for Testing Pesticide Formulations, Metals, Substances in Aqueous Solutions, and Other Products. The results of an independent peer review evaluation coordinated by the ICCVAM and the NICEATM,” National Institute of Environmental Health Sciences, NIH Publication no. 10-7512, http://www.iccvam.niehs.nih.gov/.
  72. FDA, “Guidance for Industry: Immunotoxicology Evaluation of Investigational New Drugs,” Food and Drug Administration, Center for Drug Evaluation and Research (CDER), 2002, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM079239.pdf.
  73. D. Basketter and G. Maxwell, “In vitro approaches to the identification and characterization of skin sensitizers,” Cutaneous and Ocular Toxicology, vol. 26, no. 4, pp. 359–373, 2007. View at Publisher · View at Google Scholar · View at PubMed
  74. G. Patlewicz, A. O. Aptula, E. Uriarte et al., “An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential,” SAR and QSAR in Environmental Research, vol. 18, no. 5-6, pp. 515–541, 2007. View at Publisher · View at Google Scholar · View at PubMed
  75. S. E. Anderson, K. K. Brown, L. F. Butterworth et al., “Evaluation of irritancy and sensitization potential of metalworking fluid mixtures and components,” Journal of Immunotoxicology, vol. 6, no. 1, pp. 19–29, 2009. View at Publisher · View at Google Scholar · View at PubMed
  76. L. P. Myers, B. F. Law, A. Fedorowicz et al., “Identification of phenolic dermal sensitizers in a wound closure tape,” Journal of Immunotoxicology, vol. 4, no. 4, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. P. Aeby, T. Ashikaga, S. Bessou-Touya et al. et al., “Identifying and characterizing chemical skin sensitizers without animal testing: colipa's research and method development program,” Toxicology in Vitro, vol. 24, no. 6, pp. 1465–1473, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. K. Landsteiner and J. Jacobs, “Studies on the sensitization of animals with simple chemical compounds,” Journal of Experimental Medicine, vol. 61, pp. 643–656, 1935. View at Google Scholar
  79. K. Landsteiner and J. Jacobs, “Studies on the sensitization of animals with simple chemical compounds: III. Anaphylaxis induced by arsphenamine,” Journal of Experimental Medicine, vol. 64, pp. 717–721, 1936. View at Google Scholar
  80. K. Landsteiner and J. Jacobs, “Studies on the sensitization of animals with simple chemical compounds: II.,” Journal of Experimental Medicine, vol. 64, pp. 625–639, 1936. View at Google Scholar
  81. I. Chipinda, R. O. Ajibola, M. K. Morakinyo, T. B. Ruwona, R. H. Simoyi, and P. D. Siegel, “Rapid and simple kinetics screening assay for electrophilic dermal sensitizers using nitrobenzenethiol,” Chemical Research in Toxicology, vol. 23, no. 5, pp. 918–925, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. G. F. Gerberick, J. D. Vassallo, L. M. Foertsch, B. B. Price, J. G. Chaney, and J. P. Lepoittevin, “Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach,” Toxicological Sciences, vol. 97, no. 2, pp. 417–427, 2007. View at Publisher · View at Google Scholar · View at PubMed
  83. S. Casati, P. Aeby, D. A. Basketter et al., “Dendritic cells as a tool for the predictive identification of skin sensitisation hazard,” Alternatives to Laboratory Animals, vol. 33, no. 1, pp. 47–62, 2005. View at Google Scholar
  84. H. Sakaguchi, T. Ashikaga, M. Miyazawa et al., “Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT,” Toxicology in Vitro, vol. 20, no. 5, pp. 774–784, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. Y. Yoshida, H. Sakaguchi, Y. Ito, M. Okuda, and H. Suzuki, “Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line,” Toxicology in Vitro, vol. 17, no. 2, pp. 221–228, 2003. View at Publisher · View at Google Scholar
  86. F. Python, C. Goebel, and P. Aeby, “Assessment of the U937 cell line for the detection of contact allergens,” Toxicology and Applied Pharmacology, vol. 220, no. 2, pp. 113–124, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. T. Ashikaga, Y. Yoshida, M. Hirota et al., “Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol,” Toxicology in Vitro, vol. 20, no. 5, pp. 767–773, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. B. A. Hulette, C. A. Ryan, and G. F. Gerberick, “Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment,” Toxicology and Applied Pharmacology, vol. 182, no. 3, pp. 226–233, 2002. View at Publisher · View at Google Scholar
  89. P. Azam, J. L. Peiffer, D. Chamousset et al., “The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers,” Toxicology and Applied Pharmacology, vol. 212, no. 1, pp. 14–23, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. M. Krasteva, C. Moulon, J. Peguet-Navarro, P. Courtellemont, G. Redziniak, and D. Schmitt, “In vitro sensitization of human T cells with hapten-treated Langerhans cells: a screening test for the identification of contact allergens,” Current Problems in Dermatology, vol. 25, pp. 28–36, 1996. View at Google Scholar
  91. N. Rougier, G. Redziniak, D. Mougin, D. Schmitt, and C. Vincent, “In vitro evaluation of the sensitization potential of weak contact allergens using langerhans-like dendritic cells and autologous T cells,” Toxicology, vol. 145, no. 1, pp. 73–82, 2000. View at Publisher · View at Google Scholar
  92. T. Rustemeyer, S. De Ligter, B. M. Von Blomberg, P. J. Frosch, and R. J. Scheper, “Human T lymphocyte priming in vitro by haptenated autologous dendritic cells,” Clinical and Experimental Immunology, vol. 117, no. 2, pp. 209–216, 1999. View at Publisher · View at Google Scholar
  93. J. H. Arts, C. Mommers, and C. de Heer, “Dose-response relationships and threshold levels in skin and respiratory allergy,” Critical Reviews in Toxicology, vol. 36, no. 3, pp. 219–251, 2006. View at Publisher · View at Google Scholar
  94. J. Pauluhn, R. Dearman, J. Doe, P. Hext, and T. D. Landry, “Respiratory hypersensitivity to diphenylmethane-4,4-diisocyanate in guinea pigs: comparison with trimellitic anhydride,” Inhalation Toxicology, vol. 11, no. 3, pp. 187–214, 1999. View at Google Scholar
  95. D. R. Boverhof, B. B. Gollapudi, J. A. Hotchkiss, M. Osterloh-Quiroz, and M. R. Woolhiser, “A draining lymph node assay (DLNA) for assessing the sensitizing potential of proteins,” Toxicology Letters, vol. 193, no. 2, pp. 144–151, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. R. J. Dearman, R. A. Skinner, N. E. Humphreys, and I. Kimber, “Methods for the identification of chemical respiratory allergens in rodents: comparisons of cytokine profiling with induced changes in serum IgE,” Journal of Applied Toxicology, vol. 23, no. 4, pp. 199–207, 2003. View at Publisher · View at Google Scholar · View at PubMed
  97. I. Kimber, J. Hilton, D. A. Basketter, and R. J. Dearman, “Predictive testing for respiratory sensitization in the mouse,” Toxicology Letters, vol. 86, no. 2-3, pp. 193–198, 1996. View at Publisher · View at Google Scholar
  98. S. Azadi, K. J. Klink, and B. J. Meade, “Divergent immunological responses following glutaraldehyde exposure,” Toxicology and Applied Pharmacology, vol. 197, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at PubMed
  99. R. J. Dearman, D. A. Basketter, and I. Kimber, “Variable effects of chemical allergens on serum IgE concentration in mice. Preliminary evaluation of a novel approach to the identification of respiratory sensitizers,” Journal of Applied Toxicology, vol. 12, no. 5, pp. 317–323, 1992. View at Publisher · View at Google Scholar
  100. S. E. Anderson, C. Umbright, R. Sellamuthu et al., “Irritancy and allergic responses induced by topical application of ortho-phthalaldehyde,” Toxicological Sciences, vol. 115, no. 2, pp. 435–443, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. W. S. Beckett, “Occupational respiratory diseases,” The New England Journal of Medicine, vol. 342, no. 6, pp. 406–413, 2000. View at Publisher · View at Google Scholar · View at PubMed
  102. M. H. Karol and Y. Alarie, “IgE antibodies in TDI workers,” The Journal of Allergy and Clinical Immunology, vol. 65, no. 2, p. 162, 1980. View at Google Scholar
  103. M. H. Karol, H. H. Ioset, and Y. C. Alarie, “Tolylspecific IgE antibodies in workers with hypersensitivity to toluene diisocyanate,” American Industrial Hygiene Association Journal, vol. 39, no. 6, pp. 454–458, 1978. View at Google Scholar
  104. L. M. Plitnick, S. E. Loveless, G. S. Ladics et al., “Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides,” Toxicology, vol. 193, no. 3, pp. 191–201, 2003. View at Publisher · View at Google Scholar
  105. H. O. Ku, S. H. Jeong, H. G. Kang et al., “Intracellular expression of cytokines and granzyme B in auricular lymph nodes draining skin exposed to irritants and sensitizers,” Toxicology, vol. 250, no. 2-3, pp. 116–123, 2008. View at Publisher · View at Google Scholar · View at PubMed
  106. D. R. Boverhof, R. Billington, B. B. Gollapudi et al., “Respiratory sensitization and allergy: current research approaches and needs,” Toxicology and Applied Pharmacology, vol. 226, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. K. J. Klink and B. J. Meade, “Dermal exposure to 3-amino-5-mercapto-1,2,4-triazole (AMT) induces sensitization and airway hyperreactivity in BALB/c mice,” Toxicological Sciences, vol. 75, no. 1, pp. 89–98, 2003. View at Publisher · View at Google Scholar · View at PubMed