Table of Contents
Journal of Allergy
Volume 2011, Article ID 751052, 12 pages
http://dx.doi.org/10.1155/2011/751052
Research Article

Inhalation of Ortho-Phthalaldehyde Vapor Causes Respiratory Sensitization in Mice

1Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505-2888, USA
2Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505-2888, USA

Received 22 February 2011; Accepted 27 April 2011

Academic Editor: Gordon L. Sussman

Copyright © 2011 Victor J. Johnson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Curran, P. S. Burge, and K. Wiley, “Clinical and immunologic evaluation of workers exposed to glutaraldehyde,” Allergy, vol. 51, no. 11, pp. 826–832, 1996. View at Google Scholar · View at Scopus
  2. F. Di Stefano, S. Siriruttanapruk, J. McCoach, and P. S. Burge, “Glutaraldehyde: an occupational hazard in the hospital setting,” Allergy, vol. 54, no. 10, pp. 1105–1109, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Di Stefano, S. Siriruttanapruk, J. S. McCoach, and P. S. Burge, “Occupational asthma due to glutaraldehyde,” Monaldi Archives for Chest Disease, vol. 53, pp. 50–55, 1998. View at Google Scholar
  4. P. F. Gannon, P. Bright, M. Campbell, S. P. O'Hickey, and P. S. Burge, “Occupational asthma due to glutaraldehyde and formaldehyde in endoscopy and X ray departments,” Thorax, vol. 50, no. 2, pp. 156–159, 1995. View at Google Scholar · View at Scopus
  5. L. E. Maier, H. P. Lampel, T. Bhutani, and S. E. Jacob, “Hand dermatitis: a focus on allergic contact dermatitis to biocides,” Dermatologic Clinics, vol. 27, no. 3, pp. 251–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Lerones, A. Mariscal, M. Carnero, A. García-Rodríguez, and J. Fernández-Crehuet, “Assessing the residual antibacterial activity of clinical materials disinfected with glutaraldehyde, o-phthalaldehyde, hydrogen peroxide or 2-bromo-2-nitro-1,3-propanediol by means of a bacterial toxicity assay,” Clinical Microbiology and Infection, vol. 10, no. 11, pp. 984–989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. National Institute for Occupational Safety and Health (NIOSH), “National Occupational Exposure Survey (NOES) 1981–1983. Estimated Number of Employees Potentially Exposed to Specific Agents by Occupation with 2-Digit Standard industrial Classification (SIC),” 1990. View at Google Scholar
  8. United States Environmental Protection Agency (USEPA), “Toxic Substances Control Act (TSCA) Inventory Update Reporting (IUR), Non-confidential IUR Production Volume Information,” 2006, [Search used CAS No. 643798], http://www.epa.gov/oppt/iur/tools/data/2002-vol.html. View at Google Scholar
  9. S. E. Anderson, C. Umbright, R. Sellamuthu et al., “Irritancy and allergic responses induced by topical application of ortho-phthalaldehyde,” Toxicological Sciences, vol. 115, no. 2, pp. 435–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Morinaga, G. Hasegawa, S. Koyama, Y. Ishihara, and T. Nishikawa, “Acute inflammation and immunoresponses induced by ortho-phthalaldehyde in mice,” Archives of Toxicology, vol. 84, no. 5, pp. 397–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Hasegawa, T. Morinaga, and Y. Ishihara, “Ortho-phthalaldehyde enhances allergen-specific IgE production without allergen-specific IgG in ovalbumin-sensitized mice,” Toxicology Letters, vol. 185, no. 1, pp. 45–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ayaki, K. Shimada, S. Yaguchi, R. Koide, and A. Iwasawa, “Corneal and conjunctival toxicity of disinfectants—assessing safety for use with ophthalmic surgical instruments,” Regulatory Toxicology and Pharmacology, vol. 48, no. 3, pp. 292–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Marena, L. Lodola, A. Marone Bianco et al., “Monitoring air dispersed concentrations of aldehydes during the use of ortho-phthalaldehyde and glutaraldehyde for high disinfection of endoscopes,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 25, pp. 131–136, 2003. View at Google Scholar
  14. S. P. Tucker, “Determination of ortho-phthalaldehyde in air and on surfaces,” Journal of Environmental Monitoring, vol. 10, no. 11, pp. 1337–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Fujita, M. Ogawa, and Y. Endo, “A case of occupational bronchial asthma and contact dermatitis caused by ortho-phthalaldehyde exposure in a medical worker,” Journal of Occupational Health, vol. 48, pp. 413–416, 2006. View at Google Scholar
  16. W. N. Sokol, “Nine episodes of anaphylaxis following cystoscopy caused by Cidex OPA (ortho-phthalaldehyde) high-level disinfectant in 4 patients after cytoscopy,” Journal of Allergy and Clinical Immunology, vol. 114, pp. 392–397, 2004. View at Google Scholar
  17. D. E. Cooper, A. A. White, A. N. Werkema, and B. K. Auge, “Anaphylaxis following cystoscopy with equipment sterilized with Cidex OPA (ortho-phthalaldehyde): a review of two cases,” Journal of Endourology, vol. 22, no. 9, pp. 2181–2184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Suzukawa, A. Komiya, R. Koketsu et al., “Three cases of ortho-phthalaldehyde-induced anaphylaxis after laryngoscopy: detection of specific IgE in serum,” Allergology International, vol. 56, no. 3, pp. 313–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Suzukawa, M. Yamaguchi, A. Komiya, M. Kimura, T. Nito, and K. Yamamoto, “Ortho-phthalaldehyde-induced anaphylaxis after laryngoscopy,” Journal of Allergy and Clinical Immunology, vol. 117, no. 6, pp. 1500–1501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Franchi and G. Franco, “Evidence-based decision making in an endoscopy nurse with respiratory symptoms exposed to the new ortho-phthalaldehyde (OPA) disinfectant,” Occupational Medicine, vol. 55, no. 7, pp. 575–578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Pauluhn and A. Thiel, “A simple approach to validation of directed-flow nose-only inhalation chambers,” Journal of Applied Toxicology, vol. 27, no. 2, pp. 160–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Research, vol. 29, no. 9, p. e45, 2001. View at Google Scholar · View at Scopus
  23. V. J. Johnson, B. Yucesoy, J. S. Reynolds et al., “Inhalation of toluene diisocyanate vapor induces allergic rhinitis in mice,” Journal of Immunology, vol. 179, no. 3, pp. 1864–1871, 2007. View at Google Scholar · View at Scopus
  24. United States Food and Drug Administration (USFDA), “FDA-Cleared Sterilants and High Level Disinfectants with General Claims for Processing Reusable Medical and Dental Devices—March 2009,” 2009, http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/ReprocessingofSingle-UseDevices/ucm133514.htm. View at Google Scholar
  25. J. R. Benson and P. E. Hare, “O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 2, pp. 619–622, 1975. View at Google Scholar · View at Scopus
  26. R. L. Coffman, H. F. Savelkoul, and D. A. Lebman, “Cytokine regulation of immunoglobulin isotype switching and expression,” Seminars in Immunology, vol. 1, no. 1, pp. 55–63, 1989. View at Google Scholar · View at Scopus
  27. J. M. Matheson, V. J. Johnson, V. Vallyathan, and M. I. Luster, “Exposure and immunological determinants in a murine model for toluene diisocyanate (TDI) asthma,” Toxicological Sciences, vol. 84, no. 1, pp. 88–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. G. Fraser, F. M. Graziano, C. P. Larsen, and J. F. Regal, “The role of IgG1 and IgG2 in trimellitic anhydride-induced allergic response in the guinea pig lung,” Toxicology and Applied Pharmacology, vol. 150, no. 2, pp. 218–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Cartier, L. Grammer, J. L. Malo et al., “Specific serum antibodies against isocyanates: association with occupational asthma,” Journal of Allergy and Clinical Immunology, vol. 84, no. 4, pp. 507–514, 1989. View at Google Scholar · View at Scopus
  30. M. Dragos, M. Jones, J. L. Malo, H. Ghezzo, and D. Gautrin, “Specific antibodies to diisocyanate and work-related respiratory symptoms in apprentice car-painters,” Occupational and Environmental Medicine, vol. 66, no. 4, pp. 227–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Matheson, R. W. Lange, R. Lemus, M. H. Karol, and M. I. Luster, “Importance of inflammatory and immune components in a mouse model of airway reactivity to toluene diisocyanate (TDI),” Clinical and Experimental Allergy, vol. 31, no. 7, pp. 1067–1076, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. X. D. Zhang, D. K. Murray, D. M. Lewis, and P. D. Siegel, “Dose-response and time course of specific IgE and IgG after single and repeated topical skin exposure to dry trimellitic anhydride powder in a Brown Norway rat model,” Allergy, vol. 57, no. 7, pp. 620–626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Arts, W. H. de Jong, J. J. van Triel et al., “The respiratory local lymph node assay as a tool to study respiratory sensitizers,” Toxicological Sciences, vol. 106, no. 2, pp. 423–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. W. H. De Jong, J. H. Arts, A. De Klerk et al., “Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure,” Toxicology, vol. 261, no. 3, pp. 103–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. T. S. Manetz and B. J. Meade, “Development of a flow cytometry assay for the identification and differentiation of chemicals with the potential to elicit irritation, IgE- mediated, or T cell-mediated hypersensitivity responses,” Toxicological Sciences, vol. 48, no. 2, pp. 206–217, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. T. S. Manetz, D. A. Pettit, and B. J. Meade, “The determination of draining lymph node cell cytokine mRNA levels in BALB/c mice following dermal sodium lauryl sulfate, dinitrofluorobenzene, and toluene diisocyanate exposure,” Toxicology and Applied Pharmacology, vol. 171, no. 3, pp. 174–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. K. J. Klink and B. J. Meade, “Dermal exposure to 3-amino-5-mercapto-1,2,4-triazole (AMT) induces sensitization and airway hyperreactivity in BALB/c mice,” Toxicological Sciences, vol. 75, no. 1, pp. 89–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Azadi, K. J. Klink, and B. J. Meade, “Divergent immunological responses following glutaraldehyde exposure,” Toxicology and Applied Pharmacology, vol. 197, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. S. Geha, H. H. Jabara, and S. R. Brodeur, “The regulation of immunoglobulin E class-switch recombination,” Nature Reviews Immunology, vol. 3, no. 9, pp. 721–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Ozdemir, M. Akdis, and C. A. Akdis, “T-cell response to allergens,” Chemical Immunology and Allergy, vol. 95, pp. 22–44, 2010. View at Google Scholar
  41. M. Kodama, K. Asano, T. Oguma et al., “Strain-specific phenotypes of airway inflammation and bronchial hyperresponsiveness induced by epicutaneous allergen sensitization in BALB/c and C57BL/6 mice,” International Archives of Allergy and Immunology, vol. 152, supplement 1, pp. 67–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Vanoirbeek, V. De Vooght, H. M. Vanhooren, T. S. Nawrot, B. Nemery, and P. H. Hoet, “How long do the systemic and ventilatory responses to toluene diisocyanate persist in dermally sensitized mice?” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, pp. 456–463.e5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. S. Akei, E. B. Brandt, A. Mishra et al., “Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses,” Journal of Allergy and Clinical Immunology, vol. 118, no. 1, pp. 62–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. E. L. Petsonk, M. L. Wang, D. M. Lewis, P. D. Siegel, and B. J. Husberg, “Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate,” Chest, vol. 118, no. 4, pp. 1183–1193, 2000. View at Google Scholar · View at Scopus