Table of Contents
Journal of Allergy
Volume 2012, Article ID 206109, 12 pages
http://dx.doi.org/10.1155/2012/206109
Research Article

Lithium Attenuates TGF- 𝜷 𝟏 -Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients

1Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
2Department of Medicine, Jagiellonian University Medical School, Skawińska 8, 30-031 Kraków, Poland
3Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, Balicka 122, 31-149 Kraków, Poland

Received 13 February 2012; Revised 4 July 2012; Accepted 5 July 2012

Academic Editor: Ting Fan Leung

Copyright © 2012 Marta Michalik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Sumi and Q. Hamid, “Airway remodeling in asthma,” Allergology International, vol. 56, no. 4, pp. 341–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Westergren-Thorsson, K. Larsen, K. Nihlberg et al., “Pathological airway remodelling in inflammation,” Clinical Respiratory Journal, vol. 4, supplement 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Thiery, “Epithelial-mesenchymal transitions in development and pathologies,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 740–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Baum, J. Settleman, and M. P. Quinlan, “Transitions between epithelial and mesenchymal states in development and disease,” Seminars in Cell and Developmental Biology, vol. 19, no. 3, pp. 294–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. E. King, A. Pardo, and M. Selman, “Idiopathic pulmonary fibrosis,” The Lancet, vol. 378, no. 9807, pp. 1949–1961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Descalzi, C. Folli, F. Scordamaglia, A. M. Riccio, C. Gamalero, and G. W. Canonica, “Importance of fibroblasts-myofibroblasts in asthma-induced airway remodeling,” Recent Patents on Inflammation & Allergy Drug Discovery, vol. 1, no. 3, pp. 237–241, 2007. View at Google Scholar · View at Scopus
  7. S. Al-Muhsen, J. R. Johnson, and Q. Hamid, “Remodeling in asthma,” Journal of Allergy and Clinical Immunology, vol. 128, pp. 451–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Desmoulière, I. A. Darby, and G. Gabbiani, “Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis,” Laboratory Investigation, vol. 83, no. 12, pp. 1689–1707, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. McAnulty, “Fibroblasts and myofibroblasts: their source, function and role in disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 4, pp. 666–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Hinz, “Formation and function of the myofibroblast during tissue repair,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 526–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Makinde, R. F. Murphy, and D. K. Agrawal, “The regulatory role of TGF-β in airway remodeling in asthma,” Immunology and Cell Biology, vol. 85, no. 5, pp. 348–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Halwani, S. Al-Muhsen, H. Al-Jahdali, and Q. Hamid, “Role of transforming growth factor-β in airway remodeling in asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 2, pp. 127–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. E. Redington, J. Madden, A. J. Frew et al., “Transforming growth factor-β1 in asthma: measurement in bronchoalveolar lavage fluid,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 2 I, pp. 642–647, 1997. View at Google Scholar · View at Scopus
  14. M. Michalik, M. Pierzchalska, A. Legutko et al., “Asthmatic bronchial fibroblasts demonstrate enhanced potential to differentiate into myofibroblasts in culture,” Medical Science Monitor, vol. 15, no. 7, pp. BR194–BR201, 2009. View at Google Scholar · View at Scopus
  15. C. B. Boxall, S. T. Holgate, and D. E. Davies, “The contribution of transforming growth factor-β and epidermal growth factor signalling to airway remodelling in chronic asthma,” European Respiratory Journal, vol. 27, no. 1, pp. 208–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Rahimi and E. B. Leof, “TGF-β signaling: a tale of two responses,” Journal of Cellular Biochemistry, vol. 102, no. 3, pp. 593–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Shi and J. Massagué, “Mechanisms of TGF-β signaling from cell membrane to the nucleus,” Cell, vol. 113, no. 6, pp. 685–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C.-H. Heldin and A. Moustakas, “Role of Smads in TGFβ signaling,” Cell and Tissue Research, vol. 347, no. 1, pp. 21–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Czyz and A. M. Wobus, “Embryonic stem cell differentiation: the role of extracellular factors,” Differentiation, vol. 68, no. 4-5, pp. 167–174, 2001. View at Google Scholar · View at Scopus
  20. P. Minoo and C. Li, “Cross-talk between transforming growth factor-β and Wingless/Int pathways in lung development and disease,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 6, pp. 809–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Scotton and R. C. Chambers, “Molecular targets in pulmonary fibrosis: the myofibroblast in focus,” Chest, vol. 132, no. 4, pp. 1311–1321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sharma, K. Tantisira, V. Carey et al., “A role for wnt signaling genes in the pathogenesis of impaired lung function in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 4, pp. 328–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. E. Morrisey, “Wnt signaling and pulmonary fibrosis,” American Journal of Pathology, vol. 162, no. 5, pp. 1393–1397, 2003. View at Google Scholar · View at Scopus
  24. M. Van Scoyk, J. Randall, A. Sergew, L. M. Williams, M. Tennis, and R. A. Winn, “Wnt signaling pathway and lung disease,” Translational Research, vol. 151, no. 4, pp. 175–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Carthy, F. S. Garmaroudi, Z. Luo, and B. M. McManus, “Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner,” PLoS ONE, vol. 6, no. 5, Article ID e19809, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Caraci, E. Gili, M. Calafiore et al., “TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts,” Pharmacological Research, vol. 57, no. 4, pp. 274–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Bao, S. Lim, W. Liao et al., “Glycogen synthase kinase-3β inhibition attenuates asthma in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 5, pp. 431–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Han, A. G. Li, Y. Y. Liang et al., “Smad7-induced β-catenin degradation alters epidermal appendage development,” Developmental Cell, vol. 11, no. 3, pp. 301–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Amar, R. H. Belmaker, and G. Agam, “The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases,” Current Pharmaceutical Design, vol. 17, no. 22, pp. 2264–2277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Nasr and R. W. Atkins, “Coincidental improvement in asthma during lithium treatment,” American Journal of Psychiatry, vol. 134, no. 9, pp. 1042–1043, 1977. View at Google Scholar · View at Scopus
  32. R. P. Convery, D. J. Hendrick, and S. J. Bourke, “Asthma precipitated by cessation of lithium treatment,” Postgraduate Medical Journal, vol. 75, no. 888, pp. 637–638, 1999. View at Google Scholar · View at Scopus
  33. A. J. Knox, B. G. Higgins, I. P. Hall, and A. E. Tattersfield, “Effect of oral lithium on bronchial reactivity in asthma,” Clinical Science, vol. 82, no. 4, pp. 407–412, 1992. View at Google Scholar · View at Scopus
  34. M. Michalik, M. Pierzchalska, A. Włodarczyk et al., “Transition of asthmatic bronchial fibroblasts to myofibroblasts is inhibited by cell-cell contacts,” Respiratory Medicine, vol. 105, pp. 1467–1475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. W. T. Donahoo, D. H. Bessesen, D. R. Higbee, S. Lei, G. K. Grunwald, and J. A. Higgins, “Serum lithium concentration can be used to assess dietary compliance in adults,” Journal of Nutrition, vol. 134, no. 11, pp. 3133–3136, 2004. View at Google Scholar · View at Scopus
  36. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, Biomedical Publications, Foster City, Calif, USA, 8th edition, 2008.
  37. A. Moustakas and C. H. Heldin, “Non-Smad TGF-β signals,” Journal of Cell Science, vol. 118, no. 16, pp. 3573–3584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Guo and X. F. Wang, “Signaling cross-talk between TGF-β/BMP and other pathways,” Cell Research, vol. 19, no. 1, pp. 71–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Meijer, M. Flajolet, and P. Greengard, “Pharmacological inhibitors of glycogen synthase kinase 3,” Trends in Pharmacological Sciences, vol. 25, no. 9, pp. 471–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Li, Z. Khavandgar, S. H. Lin, and M. Murshed, “Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism,” Bone, vol. 48, no. 2, pp. 321–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Wu and W. Pan, “GSK3: a multifaceted kinase in Wnt signaling,” Trends in Biochemical Sciences, vol. 35, no. 3, pp. 161–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. E. Howell and R. J. McAnulty, “TGF-β: its role in asthma and therapeutic potential,” Current Drug Targets, vol. 7, no. 5, pp. 547–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Batra, A. I. Musani, A. T. Hastie et al., “Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-β1, TGF-β2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on α-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts,” Clinical and Experimental Allergy, vol. 34, no. 3, pp. 437–444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. L. Shafer and D. A. Towler, “Transcriptional regulation of SM22α by Wnt3a: convergence with TGFβ1/Smad signaling at a novel regulatory element,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 5, pp. 621–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. A. Baarsma, A. I. R. Spanjer, G. Haitsma et al., “Activation of WNT/ β-catenin signaling in pulmonary fibroblasts by TGF-β1 is increased in chronic obstructive pulmonary disease,” PLoS ONE, vol. 6, no. 9, Article ID e25450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Liu, Y. Wang, Q. Pan et al., “Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition,” Journal of Dermatological Science, vol. 65, no. 1, pp. 38–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Deng, G. A. Dokshin, J. Lei et al., “Inhibition of glycogen synthase kinase-3βis sufficient for airway smooth muscle hypertrophy,” Journal of Biological Chemistry, vol. 283, no. 15, pp. 10198–10207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. H. Kim, S. H. Kim, J. Y. Seo et al., “Blockade of the Wnt/β-catenin pathway attenuates bleomycin-induced pulmonary fibrosis,” The Tohoku Journal of Experimental Medicine, vol. 223, no. 1, pp. 45–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Königshoff and O. Eickelberg, “WNT signaling in lung disease: a failure or a regeneration signal?” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. A. Wójcik, P. Koczurkiewicz, M. Michalik, and M. Sanak, “TGF-β1-induced connective tissue growth factor expression is enhanced in bronchial fibroblasts derived from asthmatic patients,” Polish Archives of Internal Medicine, vol. 122, no. 7-8, pp. 326–332, 2012. View at Google Scholar
  51. W. Liu, H. Rui, J. Wang et al., “Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia,” EMBO Journal, vol. 25, no. 8, pp. 1646–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Liu, Y. Tang, T. Qiu, X. Cao, and T. L. Clemens, “A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells,” Journal of Biological Chemistry, vol. 281, no. 25, pp. 17156–17163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Guo, A. Ramirez, D. S. Waddell, Z. Li, X. Liu, and X. F. Wang, “Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling,” Genes and Development, vol. 22, no. 1, pp. 106–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Lönn, A. Morén, E. Raja, M. Dahl, and A. Moustakas, “Regulating the stability of TGFβ receptors and Smads,” Cell Research, vol. 19, no. 1, pp. 21–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Z.-J. Shen, R. K. Braun, J. Hu et al., “Pin1 protein regulates smad protein signaling and pulmonary fibrosis,” Journal of Biological Chemistry, vol. 287, no. 28, pp. 23294–23305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. H. H. Luu, R. Zhang, R. C. Haydon et al., “Wnt/β-catenin signaling pathway as novel cancer drug targets,” Current Cancer Drug Targets, vol. 4, no. 8, pp. 653–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Saraswati, M. P. Alfaro, C. A. Thorne, J. Atkinson, E. Lee, and P. P. Young, “Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling,” PLoS ONE, vol. 5, no. 11, Article ID e15521, 2010. View at Publisher · View at Google Scholar · View at Scopus