Table of Contents
Journal of Allergy
Volume 2012, Article ID 492761, 7 pages
http://dx.doi.org/10.1155/2012/492761
Review Article

Development of Mucosal Immunity in Children: A Rationale for Sublingual Immunotherapy?

Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland

Received 19 June 2011; Accepted 22 August 2011

Academic Editor: Seval Guneser Kendirli

Copyright © 2012 Aleksandra Szczawinska-Poplonyk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mayer, “Mucosal immunity,” Pediatrics, vol. 111, no. 6, pp. 1595–1600, 2003. View at Google Scholar · View at Scopus
  2. B. A. Dale and L. P. Fredericks, “Antimicrobial peptides in the oral environment: expression and function in health and disease,” Current Issues in Molecular Biology, vol. 7, no. 2, pp. 119–134, 2005. View at Google Scholar · View at Scopus
  3. P. D. S. Gomes and M. H. Fernandes, “Defensins in the oral cavity: distribution and biological role,” Journal of Oral Pathology and Medicine, vol. 39, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. McMahon, K. Schwartz, O. Yilmaz, E. Brown, L. K. Ryan, and G. Diamond, “Vitamin D-mediated induction of innate immunity in gingival epithelial cells,” Infection and Immunity, vol. 79, no. 6, pp. 2250–2256, 2011. View at Publisher · View at Google Scholar · View at PubMed
  5. A. F. Gombart, “The vitamin D-antimicrobial peptide pathway and its role in protection against infection,” Future Microbiology, vol. 4, no. 9, pp. 1151–1165, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. Hajishengallis and J. D. Lambris, “Crosstalk pathways between Toll-like receptors and the complement system,” Trends in Immunology, vol. 31, no. 4, pp. 154–163, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. U. Holmskov, S. Thiel, and J. C. Jensenius, “Collectins and ficolins: humoral lectins of the innate immune defense,” Annual Review of Immunology, vol. 21, pp. 547–578, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Dwivedy and P. Aich, “Importance of innate mucosal immunity and the promises it holds,” International Journal of General Medicine, vol. 4, pp. 299–311, 2011. View at Google Scholar
  9. T. Ito, W. F. Carson, K. A. Cavassani, J. M. Connett, and S. L. Kunkel, “CCR6 as a mediator of immunity in the lung and gut,” Experimental Cell Research, vol. 317, no. 5, pp. 613–619, 2011. View at Publisher · View at Google Scholar · View at PubMed
  10. J. H. Niess and G. Adler, “Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions,” Journal of Immunology, vol. 184, no. 4, pp. 2026–2037, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. I. Puga, M. Cols, and A. Cerutti, “Innate signals in mucosal immunoglobulin class switching,” Journal of Allergy and Clinical Immunology, vol. 126, no. 5, pp. 889–895, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Chorny, I. Puga, and A. Cerutti, “Innate signaling networks in mucosal IgA class switching,” Advances in Immunology, vol. 107, pp. 31–69, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Gleeson and A. W. Cripps, “Development of mucosal immunity in the first year of life and relationship to sudden infant death syndrome,” FEMS Immunology and Medical Microbiology, vol. 42, no. 1, pp. 21–33, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Z. Jaffar, M. E. Ferrini, L. A. Herritt, and K. Roberts, “Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels,” Journal of Immunology, vol. 182, no. 8, pp. 4507–4511, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. Doreau, A. Belot, J. Bastid et al., “Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus,” Nature Immunology, vol. 10, no. 7, pp. 778–785, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. L. Guglani and S. A. Khader, “Th17 cytokines in mucosal immunity and inflammation,” Current Opinion in HIV and AIDS, vol. 5, no. 2, pp. 120–127, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Maheshwari and M. Zemlin, “Ontogeny of the intestinal immune system,” Immunology and Infection, vol. 2, no. 10, pp. 18–26, 2006. View at Google Scholar
  18. P. S. Thrane, T. O. Rognum, and P. Brandtzaeg, “Ontogenesis of the secretory immune system and innate defence factors in human parotid glands,” Clinical and Experimental Immunology, vol. 86, no. 2, pp. 342–348, 1991. View at Google Scholar · View at Scopus
  19. M. Gleeson, A. W. Cripps, R. L. Clancy, A. J. Husband, M, J. Hensley, and S. R. Leeder, “Ontogeny of the secretory immune system in man,” Australian and New Zealand Journal of Medicine, vol. 12, no. 4, pp. 255–258, 1982. View at Google Scholar
  20. D. S. Newburg and W. A. Walker, “Protection of the neonate by the innate immune system of developing gut and of human milk,” Pediatric Research, vol. 61, no. 1, pp. 2–8, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. P. Sherman, S. H. Bennett, F. F. Hwang, and C. Yu, “Neonatal small bowel epithelia: enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG,” BioMetals, vol. 17, no. 3, pp. 285–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Weemaes, I. Klasen, J. Göertz, M. Beldhuis-Valkis, O. Olafsson, and A. Haraldsson, “Development of immunoglobulin a in infancy and childhood,” Scandinavian Journal of Immunology, vol. 58, no. 6, pp. 642–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kuitonen and E. Savilahti, “Mucosal IgA, mucosal cow's milk antibodies, serum cow's milk antibodies and gastrointestinal permeability in infants,” Pediatric Allergy and Immunology, vol. 6, no. 1, pp. 30–35, 1995. View at Google Scholar · View at Scopus
  24. B. M. Seidel, B. Schulze, S. Schubert, and M. Borte, “Oral mucosal immunocompetence in preterm infants in the first 9 months of life,” European Journal of Pediatrics, vol. 159, no. 10, p. 789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Ewing, D. C. Otczyk, S. Occhipinti, J. M. Kyd, M. Gleeson, and A. Cripps, “Developmental profiles of mucosal immunity in pre-school children,” Clinical and Developmental Immunology, vol. 2010, Article ID 196785, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. N. Novak, J. Haberstok, T. Bieber, and J. P. Allam, “The immune privilege of the oral mucosa,” Trends in Molecular Medicine, vol. 14, no. 5, pp. 191–198, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. F. du Pre and J. N. Samsom, “Adaptive T-cell responses regulating oral tolerance to protein antigen,” Allergy, vol. 66, no. 4, pp. 478–490, 2011. View at Publisher · View at Google Scholar · View at PubMed
  28. J. H. Weitkamp, E. Rudzinski, T. Koyama et al., “Ontogeny of FOXP3+ regulatory T cells in the postnatal human small intestinal and large intestinal lamina propria,” Pediatric and Developmental Pathology, vol. 12, no. 6, pp. 443–449, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. Strobel, “Immunity induced after a feed of antigen during early life: oral tolerance v. sensitisation,” Proceedings of the Nutrition Society, vol. 60, no. 4, pp. 437–442, 2001. View at Google Scholar · View at Scopus
  30. G. Chirico, R. Marzollo, S. Cortinovis, C. Fonte, and A. Gasparoni, “Antiinfective properties of human milk,” Journal of Nutrition, vol. 138, no. 9, pp. 1801–1806, 2008. View at Google Scholar · View at Scopus
  31. C. J. Field, C. A. Thomson, J. E. Van Aerde et al., “Lower proportion of CD45R0+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids,” Journal of Pediatric Gastroenterology and Nutrition, vol. 31, no. 3, pp. 291–299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. E. S. Buescher, “Anti-inflammatory characteristics of human milk: how, where, why,” Advances in Experimental Medicine and Biology, vol. 501, pp. 207–222, 2001. View at Google Scholar · View at Scopus
  33. C. J. Field, “The immunological components of human milk and their effect on immune development in infants,” Journal of Nutrition, vol. 135, no. 1, pp. 1–4, 2005. View at Google Scholar · View at Scopus
  34. N. Novak, T. Bieber, and N. Katoh, “Engagement of FcεRI on human monocytes induces the production of IL-10 and prevents their differentiation in dendritic cells,” Journal of Immunology, vol. 167, no. 2, pp. 797–804, 2001. View at Google Scholar · View at Scopus
  35. D. von Bubnoff, H. Matz, C. Frahnert et al., “FcεRI induces the tryptophan degradation pathway involved in regulating T cell responses,” Journal of Immunology, vol. 169, no. 4, pp. 1810–1816, 2002. View at Google Scholar · View at Scopus
  36. J. N. Samsom, L. A. van Berkel, J. M. Van Helvoort et al., “FcγRIIB regulates nasal and oral tolerance: a role for dendritic cells,” Journal of Immunology, vol. 174, no. 9, pp. 5279–5287, 2005. View at Google Scholar · View at Scopus
  37. J. P. Allam, W. M. Peng, T. Appel et al., “Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells,” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. L. Weiner, A. P. da Cunha, F. Quintana, and H. Wu, “Oral tolerance,” Immunological Reviews, vol. 241, no. 1, pp. 241–259, 2011. View at Publisher · View at Google Scholar · View at PubMed
  39. C. A. Akdis, I. B. Barlan, N. Bahceciler, and M. Akdis, “Immunological mechanisms of sublingual immunotherapy,” Allergy, vol. 61, no. 81, pp. 11–14, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. O. Eifan, T. Akkoc, A. Yildiz et al., “Clinical efficacy and immunological mechanisms of sublingual and subcutaneous immunotherapy in asthmatic/rhinitis children sensitized to house dust mite: an open randomized controlled trial,” Clinical and Experimental Allergy, vol. 40, no. 6, pp. 922–932, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. R. E. O'Hehir, L. M. Gardner, M. P. de Leon et al., “House dust mite sublingual immunotherapy: the role for transforming growth factor-β and functional regulatory T cells,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 10, pp. 936–947, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. F. Angelini, V. Pacciani, S. Corrente et al., “Dendritic cells modifi cation during sublingual immunotherapy in children with allergic symptoms to house dust mites,” World Journal of Pediatrics, vol. 7, no. 1, pp. 24–30, 2011. View at Publisher · View at Google Scholar · View at PubMed
  43. C. Ozdemir, D. Yazi, I. Gocmen et al., “Efficacy of long-term sublingual immunotherapy as an adjunct to pharmacotherapy in house dust mite-allergic children with asthma,” Pediatric Allergy and Immunology, vol. 18, no. 6, pp. 508–515, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Penagos, G. Passalacqua, E. Compalati et al., “Metaanalysis of the efficacy of sublingual immunotherapy in the treatment of allergic asthma in pediatric patients, 3 to 18 years of age,” Chest, vol. 133, no. 3, pp. 599–609, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. G. L. Marseglia, C. Incorvaia, M. La Rosa, F. Frati, and F. Marcucci, “Sublingual immunotherapy in children: facts and needs,” Italian Journal of Pediatrics, vol. 35, no. 31, article 31, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. P. Moingeon, T. Batard, R. Fadel, F. Frati, J. Sieber, and L. Van Overtvelt, “Immune mechanisms of allergen-specific sublingual immunotherapy,” Allergy, vol. 61, no. 2, pp. 151–165, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. J. Ferrés, J. L. Justicia, M. P. García, M. Muñoz-Tudurí, and V. Alvà, “Efficacy of high-dose sublingual immunotherapy in children allergic to house dust mites in real-life clinical practice,” Allergologia et Immunopathologia, vol. 39, no. 3, pp. 122–127, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. U. Wahn, “Sublingual immunotherapy in children—ready for prime time?” Pediatric Allergy and Immunology, vol. 21, no. 4, pp. 559–563, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus