Table of Contents
Journal of Allergy
Volume 2012, Article ID 943982, 11 pages
http://dx.doi.org/10.1155/2012/943982
Research Article

Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

1Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, University Hospital of Nottingham, Nottingham NG7 2UH, UK
2Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RD, UK

Received 14 June 2011; Revised 2 September 2011; Accepted 18 September 2011

Academic Editor: Darryl A. Knight

Copyright © 2012 Ceri E. Stewart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.