Table of Contents
Journal of Allergy
Volume 2012, Article ID 943982, 11 pages
http://dx.doi.org/10.1155/2012/943982
Research Article

Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

1Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, University Hospital of Nottingham, Nottingham NG7 2UH, UK
2Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RD, UK

Received 14 June 2011; Revised 2 September 2011; Accepted 18 September 2011

Academic Editor: Darryl A. Knight

Copyright © 2012 Ceri E. Stewart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, 2007, http://www.who.int/features/factfiles/asthma/en/index.html.
  2. J. Bousquet, P. K. Jeffery, W. W. Busse, M. Johnson, and A. M. Vignola, “Asthma: from bronchoconstriction to airways inflammation and remodeling,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1720–1745, 2000. View at Google Scholar · View at Scopus
  3. S. T. Holgate, “Epithelium dysfunction in asthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1233–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. Davies, “The role of the epithelium in airway remodeling in asthma,” Proceedings of the American Thoracic Society, vol. 6, no. 8, pp. 678–682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Sachs, W. E. Finkbeiner, and J. H. Widdicombe, “Effects of media on differentiation of cultured human tracheal epithelium,” In Vitro Cellular and Developmental Biology—Animal, vol. 39, no. 1-2, pp. 56–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Jiang, E. R. Lee, M. B. Lane, Y. F. Xiao, D. J. Harris, and S. H. Cheng, “Partial correction of defective Cl(-) secretion in cystic fibrosis epithelial cells by an analog of squalamine,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 281, no. 5, pp. L1164–L1172, 2001. View at Google Scholar · View at Scopus
  7. R. W. Y. Chan, K. M. Yuen, W. C. L. Yu et al., “Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation,” PLoS ONE, vol. 5, no. 1, p. e8713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Pedemonte, “Inhibition of Na(+)-pump expression by impairment of protein glycosylation is independent of the reduced sodium entry into the cell,” Journal of Membrane Biology, vol. 147, no. 3, pp. 223–231, 1995. View at Google Scholar · View at Scopus
  9. A. Kicic, E. N. Sutanto, P. T. Stevens, D. A. Knight, and S. M. Stick, “Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 10, pp. 1110–1118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kicic, T. S. Hallstrand, E. N. Sutanto et al., “Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 9, pp. 889–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. T. Stevens, A. Kicic, E. N. Sutanto, D. A. Knight, and S. M. Stick, “Dysregulated repair in asthmatic paediatric airway epithelial cells: the role of plasminogen activator inhibitor-1,” Clinical and Experimental Allergy, vol. 38, no. 12, pp. 1901–1910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. L. Hackett, G. K. Singhera, F. Shaheen et al., “Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to RSV and air pollution,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 5, pp. 1090–1100, 2011. View at Google Scholar
  13. C. Xiao, S. M. Puddicombe, S. Field et al., “Defective epithelial barrier function in asthma,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 549.e12–556.e12, 2011. View at Publisher · View at Google Scholar
  14. S. R. White, B. M. Fischer, B. A. Marroquin, and R. Stern, “Interleukin-1β mediates human airway epithelial cell migration via NF-κB,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 6, pp. L1018–L1027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Danahay, H. Atherton, G. Jones, R. J. Bridges, and C. T. Poll, “Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 282, no. 2, pp. L226–L236, 2002. View at Google Scholar · View at Scopus
  16. S. J. Wadsworth, R. Atsuta, J. O. McLntyre, T. L. Hackett, G. K. Singhera, and D. R. Dorscheid, “IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells,” Journal of Allergy and Clinical Immunology, vol. 126, no. 2, pp. 366.e8–374.e8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. McGovern, P. A. Risse, K. Tsuchiya, M. Hassan, G. Frigola, and J. G. Martin, “LTD4 induces HB-EGF-dependent CXCL8 release through EGFR activation in human bronchial epithelial cells,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 299, no. 6, pp. L808–L815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Wan, H. L. Winton, C. Soeller et al., “Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1,” Clinical and Experimental Allergy, vol. 30, no. 5, pp. 685–698, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Sajjan, Q. Wang, Y. Zhao, D. C. Gruenert, and M. B. Hershenson, “Rhinovirus disrupts the barrier function of polarized airway epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 12, pp. 1271–1281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Chanez, “Severe asthma is an epithelial disease,” European Respiratory Journal, vol. 25, no. 6, pp. 945–946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Sporty, L. Horálková, and C. Ehrhardt, “In vitro cell culture models for the assessment of pulmonary drug disposition,” Expert Opinion on Drug Metabolism and Toxicology, vol. 4, no. 4, pp. 333–345, 2008. View at Publisher · View at Google Scholar
  22. J. Fogh, “Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors,” National Cancer Institute Monograph, vol. 49, pp. 5–9, 1978. View at Google Scholar · View at Scopus
  23. C. I. Grainger, L. L. Greenwell, D. J. Lockley, G. P. Martin, and B. Forbes, “Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier,” Pharmaceutical Research, vol. 23, no. 7, pp. 1482–1490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. W. E. Finkbeiner, S. D. Carrier, and C. E. Teresi, “Reverse transcription polymerase chain reaction (RT-PCR) phenotypic analysis of cell cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomas,” American Journal of Respiratory Cell and Molecular Biology, vol. 9, no. 5, pp. 547–556, 1993. View at Google Scholar · View at Scopus
  25. R. R. Reddel, Y. Ke, B. I. Gerwin et al., “Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes,” Cancer Research, vol. 48, no. 7, pp. 1904–1909, 1988. View at Google Scholar · View at Scopus
  26. T. L. Noah, J. R. Yankaskas, J. L. Carson et al., “Tight junctions and mucin mRNA in BEAS-2B cells,” In Vitro Cellular and Developmental Biology—Animal, vol. 31, no. 10, pp. 738–740, 1995. View at Google Scholar · View at Scopus
  27. T. Kikuchi, J. D. Shively, J. S. Foley, J. M. Drazen, and D. J. Tschumperlin, “Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 287, no. 1, pp. L119–L126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Wadsworth, H. S. Nijmeh, and I. P. Hall, “Glucocorticoids increase repair potential in a novel in vitro human airway epithelial wounding model,” Journal of Clinical Immunology, vol. 26, no. 4, pp. 376–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Ke, R. R. Reddel, B. I. Gerwin et al., “Human bronchial epithelial cells with integrated SV40 virus T antigen genes retain the ability to undergo squamous differentiation,” Differentiation, vol. 38, no. 1, pp. 60–66, 1988. View at Google Scholar · View at Scopus
  30. H. Yoshisue, S. M. Puddicombe, S. J. Wilson et al., “Characterization of ciliated bronchial epithelium 1, a ciliated cell-associated gene induced during mucociliary differentiation,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 5, pp. 491–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. F. Rogers, “The airway goblet cell,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 1, pp. 1–6, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein, “Comparing protein abundance and mRNA expression levels on a genomic scale,” Genome Biology, vol. 4, no. 9, p. 117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Gry, R. Rimini, S. Strömberg et al., “Correlations between RNA and protein expression profiles in 23 human cell lines,” BMC Genomics, vol. 10, p. 365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Lopez-Souza, G. Dolganov, R. Dubin et al., “Resistance of differentiated human airway epithelium to infection by rhinovirus,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 286, no. 2, pp. L373–L381, 2004. View at Google Scholar · View at Scopus
  35. H. Wan, H. L. Winton, C. Soeller et al., “Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 anmd 16HBE14o-,” European Respiratory Journal, vol. 15, no. 6, pp. 1058–1068, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. L. A. Miller, J. Usachenko, R. J. McDonald, and D. M. Hyde, “Trafficking of neutrophils across airway epithelium is dependent upon both thioredoxin- and pertussis toxin-sensitive signaling mechanisms,” Journal of Leukocyte Biology, vol. 68, no. 2, pp. 201–208, 2000. View at Google Scholar · View at Scopus
  37. R. F. Robledo, D. S. Barber, and M. L. Witten, “Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure,” Toxicological Sciences, vol. 51, no. 1, pp. 119–125, 1999. View at Publisher · View at Google Scholar · View at Scopus