Table of Contents
Journal of Amino Acids
Volume 2012, Article ID 848037, 10 pages
http://dx.doi.org/10.1155/2012/848037
Research Article

Role of Linkers between Zinc Fingers in Spacing Recognition by Plant TFIIIA-Type Zinc-Finger Proteins

1Disease Resistant Crops Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
2Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Received 28 April 2011; Revised 1 August 2011; Accepted 4 August 2011

Academic Editor: Nancy C. Horton

Copyright © 2012 Setsuko Fukushima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Takatsuji, “Zinc-finger transcription factors in plants,” Cellular and Molecular Life Sciences, vol. 54, no. 6, pp. 582–596, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Takatsuji, “Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science,” Plant Molecular Biology, vol. 39, no. 6, pp. 1073–1078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Berg and H. A. Godwin, “Lessons from zinc-binding peptides,” Annual Review of Biophysics and Biomolecular Structure, vol. 26, pp. 357–371, 1997. View at Google Scholar
  4. J. Miller, A. D. McLachlan, and A. Klug, “Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes,” EMBO Journal, vol. 4, no. 6, pp. 1609–1614, 1985. View at Google Scholar · View at Scopus
  5. J. M. Berg and D. L. Merkle, “On the metal ion specificity of "zinc finger" proteins,” Journal of the American Chemical Society, vol. 111, no. 10, pp. 3759–3761, 1989. View at Google Scholar · View at Scopus
  6. M. S. Lee, G. P. Gippert, K. V. Soman, D. A. Case, and P. E. Wright, “Three-dimensional solution structure of a single zinc finger DNA-binding domain,” Science, vol. 245, no. 4918, pp. 635–637, 1989. View at Google Scholar · View at Scopus
  7. D. S. Wuttke, M. P. Foster, D. A. Case, J. M. Gottesfeld, and P. E. Wright, “Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity,” Journal of Molecular Biology, vol. 273, no. 1, pp. 183–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. N. P. Pavletich and C. O. Pabo, “Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å,” Science, vol. 252, no. 5007, pp. 809–817, 1991. View at Google Scholar · View at Scopus
  9. N. P. Pavletich and C. O. Pabo, “Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers,” Science, vol. 261, no. 5129, pp. 1701–1707, 1993. View at Google Scholar · View at Scopus
  10. M. Elrod-Erickson, M. A. Rould, L. Nekludova, and C. O. Pabo, “Zif268 protein-DNA complex refined at 1.6 Å: a model system for understanding zinc finger-DNA interactions,” Structure, vol. 4, no. 10, pp. 1171–1180, 1996. View at Google Scholar · View at Scopus
  11. G. H. Jacobs, “Determination of the base recognition positions of zinc fingers from sequence analysis,” EMBO Journal, vol. 11, no. 12, pp. 4507–4517, 1992. View at Google Scholar · View at Scopus
  12. J. H. Laity, B. M. Lee, and P. E. Wright, “Zinc finger proteins: new insights into structural and functional diversity,” Current Opinion in Structural Biology, vol. 11, no. 1, pp. 39–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Schuh, W. Aicher, U. Gaul et al., “A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene,” Cell, vol. 47, no. 6, pp. 1025–1032, 1986. View at Google Scholar · View at Scopus
  14. K. I. Kubo, A. Sakamoto, A. Kobayashi et al., “CYs2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition,” Nucleic Acids Research, vol. 26, no. 2, pp. 608–615, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Takatsuji, M. Mori, P. N. Benfey, L. Ren, and N. H. Chua, “Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings,” EMBO Journal, vol. 11, no. 1, pp. 241–249, 1992. View at Google Scholar · View at Scopus
  16. C. C. Englbrecht, H. Schoof, and S. Böhm, “Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome,” BMC Genomics, vol. 5, article no. 39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. H. Jenkins, J. Li, C. P. Scutt, and P. M. Gilmartin, “Analysis of members of the Silene latifolia CYs2/His2 zinc-finger transcription factor family during dioecious flower development and in a novel stamen-defective mutant ssf1,” Planta, vol. 220, no. 4, pp. 559–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sugano, H. Kaminaka, Z. Rybka et al., “Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia,” Plant Journal, vol. 36, no. 6, pp. 830–841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sakamoto, K. Maruyama, Y. Sakuma et al., “Arabidopsis CYs2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions,” Plant Physiology, vol. 136, no. 1, pp. 2734–2746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Iida, T. Kazuoka, S. Torikai, H. Kikuchi, and K. Oeda, “A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis,” Plant Journal, vol. 24, no. 2, pp. 191–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Kim, S. H. Lee, Y. H. Cheong et al., “A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants,” Plant Journal, vol. 25, no. 3, pp. 247–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. R. Van Der Krol, R. M. P. Van Poecke, O. F. J. Vorst et al., “Developmental and wound-, cold-, desiccation-, ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene ZPT2-2,” Plant Physiology, vol. 121, no. 4, pp. 1153–1162, 1999. View at Google Scholar · View at Scopus
  23. S. Kapoor and H. Takatsuji, “Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia,” Plant Molecular Biology, vol. 61, no. 3, pp. 415–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Frugier, S. Poirier, B. Satiat-Jeunemaître, A. Kondorosi, and M. Crespi, “A Kruppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis,” Genes and Development, vol. 14, no. 4, pp. 475–482, 2000. View at Google Scholar · View at Scopus
  25. H. Takatsuji, N. Nakamura, and Y. Katsumoto, “A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression,” Plant Cell, vol. 6, no. 7, pp. 947–958, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Takatsuji and T. Matsumoto, “Target-sequence recognition by separate-type CYs2/His2 zinc finger proteins in plants,” Journal of Biological Chemistry, vol. 271, no. 38, pp. 23368–23373, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. K. I. Yoshioka, S. Fukushima, T. Yamazaki, M. Yoshida, and H. Takatsuji, “The plant zinc finger protein ZPT2-2 has a unique mode of DNA interaction,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35802–35807, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. K. Blackwell, L. Kretzner, E. M. Blackwood, R. N. Eisenman, and H. Weintraub, “Sequence-specific DNA binding by the c-Myc protein,” Science, vol. 250, no. 4984, pp. 1149–1151, 1990. View at Google Scholar · View at Scopus
  29. P. Denny, S. Swift, F. Connor, and A. Ashworth, “An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein,” EMBO Journal, vol. 11, no. 10, pp. 3705–3712, 1992. View at Google Scholar · View at Scopus
  30. M. Elrod-Erickson and C. O. Pabo, “Binding studies with mutants of Zif268. Contribution of individual side chains to binding affinity and specificity in the Zif268 zinc finger-DNA complex,” The Journal of Biological Chemistry, vol. 274, no. 27, pp. 19281–19285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Remacle, H. Kraft, W. Lerchner et al., “New mode of DNA binding of multi-zinc finger transcription factors: δEF1 family members bind with two hands to two target sites,” EMBO Journal, vol. 18, no. 18, pp. 5073–5084, 1999. View at Publisher · View at Google Scholar · View at Scopus