Table of Contents
Journal of Amino Acids
Volume 2013 (2013), Article ID 240537, 11 pages
http://dx.doi.org/10.1155/2013/240537
Research Article

Ethanol- and/or Taurine-Induced Oxidative Stress in Chick Embryos

1School of Dentistry, Indiana University, Indianapolis, IN 46202, USA
2Biology Department, Hillsdale College, Dow 213, 278 N. West Street, Hillsdale, MI 49242-1205, USA
3Neurology Department, Northwestern University, Chicago, IL 60611, USA
4Chicago College of Osteopathic Medicine, Downers Grove, IL 60515, USA
5U.S. Army Criminal Investigation Laboratory, Forest Park, GA 30297, USA

Received 10 December 2012; Revised 10 January 2013; Accepted 24 January 2013

Academic Editor: Hieronim Jakubowski

Copyright © 2013 Emily J. Berning et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Because taurine alleviates ethanol- (EtOH-) induced lipid peroxidation and liver damage in rats, we asked whether exogenous taurine could alleviate EtOH-induced oxidative stress in chick embryos. Exogenous EtOH (1.5 mmol/Kg egg or 3 mmol/Kg egg), taurine (4  mol/Kg egg), or EtOH and taurine (1.5 mmol EtOH and 4  mol taurine/Kg egg or 3 mmol EtOH and 4  mol taurine/Kg egg) were injected into fertile chicken eggs during the first three days of embryonic development (E0–2). At 11 days of development (midembryogenesis), serum taurine levels and brain caspase-3 activities, homocysteine (HoCys) levels, reduced glutathione (GSH) levels, membrane fatty acid composition, and lipid hydroperoxide (LPO) levels were measured. Early embryonic EtOH exposure caused increased brain apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress, as measured by decreased brain GSH levels; decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Although taurine is reported to be an antioxidant, exogenous taurine was embryopathic and caused increased apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress (decreased brain GSH levels); decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Combined EtOH and taurine treatments also caused increased apoptosis rates and oxidative stress.