Table of Contents
Journal of Amino Acids
Volume 2014 (2014), Article ID 346809, 12 pages
http://dx.doi.org/10.1155/2014/346809
Research Article

Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality

1Laboratory of Cellular Immunology, Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
2College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
3Laboratory of Molecular Genetics, Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA

Received 16 October 2013; Revised 13 December 2013; Accepted 15 December 2013; Published 3 February 2014

Academic Editor: Guoyao Wu

Copyright © 2014 Eunkyue Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Schuller-Levis and E. Park, “Is taurine a biomarker?” Advances in Clinical Chemistry, vol. 41, pp. 1–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Sturman, “Taurine in development,” Physiological Reviews, vol. 73, no. 1, pp. 119–148, 1993. View at Google Scholar · View at Scopus
  3. R. J. Huxtable, “Physiological actions of taurine,” Physiological Reviews, vol. 72, no. 1, pp. 101–163, 1992. View at Google Scholar · View at Scopus
  4. Y. Xu, P. Lu, H. Imaki, and J. A. Sturman, “Feline maternal deficiency: a quantitative morphometric and immunohistochemical study of newborn visual cortex,” Dendron, vol. 1, pp. 129–145, 1992. View at Google Scholar
  5. P. Lu, G. Schuller-Levis, and J. A. Sturman, “Distribution of taurine-like immunoreactivity in cerebellum of kittens from taurine-supplemented and taurine-deficient mothers,” International Journal of Developmental Neuroscience, vol. 9, no. 6, pp. 621–629, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Schuller-Levis, P. D. Mehta, R. Rudelli, and J. Sturman, “Immunologic consequences of taurine deficiency in cats,” Journal of Leukocyte Biology, vol. 47, no. 4, pp. 321–333, 1990. View at Google Scholar · View at Scopus
  7. G. B. Schuller-Levis and J. A. Sturman, “‘Activation’ of alveolar leukocytes isolated from cats fed taurine-free diets,” Advances in Experimental Medicine and Biology, vol. 315, pp. 83–90, 1992. View at Google Scholar · View at Scopus
  8. G. Schuller-Levis, R. E. Gordon, C. Wang, S. Y. Park, and E. Park, “Protection of bleomycin-induced fibrosis and inflammation by taurine,” International Immunopharmacology, vol. 9, no. 7-8, pp. 971–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Park, M. R. Quinn, C. E. Wright, and G. Schuller-Levis, “Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells,” Journal of Leukocyte Biology, vol. 54, no. 2, pp. 119–124, 1993. View at Google Scholar · View at Scopus
  10. E. Park, G. Schuller-Levis, and M. R. Quinn, “Taurine chloramine inhibits production of nitric oxide and TNF-α in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events,” Journal of Immunology, vol. 154, no. 9, pp. 4778–4784, 1995. View at Google Scholar · View at Scopus
  11. R. Jenness, “The composition of human milk,” Seminars in Perinatology, vol. 3, no. 3, pp. 225–239, 1979. View at Google Scholar
  12. H. Imaki, M. Neuringer, and J. Sturman, “Long-term effects on retina of rhesus monkeys fed taurine-free human infant formula,” Advances in Experimental Medicine and Biology, vol. 403, pp. 351–360, 1996. View at Google Scholar · View at Scopus
  13. J. de la Rosa and M. H. Stipanuk, “Evidence for a rate-limiting role of cysteinesulfinate decarboxylase activity in taurine biosynthesis in vivo,” Comparative Biochemistry and Physiology B, vol. 81, no. 3, pp. 565–571, 1985. View at Google Scholar · View at Scopus
  14. E. Park, S. Y. Park, C. Wang, J. Xu, G. LaFauci, and G. Schuller-Levis, “Cloning of murine cysteine sulfinic acid decarboxylase and its mRNA expression in murine tissues,” Biochimica et Biophysica Acta, vol. 1574, no. 3, pp. 403–406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Stipanuk, “Role of the liver in regulation of body cysteine and taurine levels: a brief review,” Neurochemical Research, vol. 29, no. 1, pp. 105–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Bella, Y.-H. Kwon, L. L. Hirschberger, and M. H. Stipanuk, “Post-transcriptional regulation of cysteine dioxygenase in rat liver,” Advances in Experimental Medicine and Biology, vol. 483, pp. 71–85, 2000. View at Google Scholar · View at Scopus
  17. J. E. Dominy Jr., C. R. Simmons, L. L. Hirschberger, J. Hwang, R. M. Coloso, and M. H. Stipanuk, “Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase,” Journal of Biological Chemistry, vol. 282, no. 35, pp. 25189–25198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Ueki and M. H. Stipanuk, “Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland,” Journal of Nutrition, vol. 137, no. 8, pp. 1887–1894, 2007. View at Google Scholar · View at Scopus
  19. D. L. Bella, L. L. Hirschberger, Y. H. Kwon, and M. H. Stipanuk, “Cysteine metabolism in periportal and perivenous hepatocytes: perivenous cells have greater capacity for glutathione production and taurine synthesis but not for cysteine catabolism,” Amino Acids, vol. 23, no. 4, pp. 453–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Hosokawa, A. Matsumoto, J. Oka, H. Itakura, and K. Yamaguchi, “Isolation and characterization of a cDNA for rat liver cysteine dioxygenase,” Biochemical and Biophysical Research Communications, vol. 168, no. 2, pp. 473–478, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Dominy Jr., J. Hwang, S. Guo, L. L. Hirschberger, S. Zhang, and M. H. Stipanuk, “Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity,” Journal of Biological Chemistry, vol. 283, no. 18, pp. 12188–12201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Ueki and M. H. Stipanuk, “3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways,” Journal of Nutrition, vol. 139, no. 2, pp. 207–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. Huxtable, “Expanding the circle 1975–1999: sulfur biochemistry and insights on the biological functions of taurine,” Advances in Experimental Medicine and Biology, vol. 483, pp. 1–25, 2000. View at Google Scholar · View at Scopus
  24. I. Reymond, A. Sergeant, and M. Tappaz, “Molecular cloning and sequence analysis of the cDNA encoding rat liver cysteine sulfinate decarboxylase (CSD),” Biochimica et Biophysica Acta, vol. 1307, no. 2, pp. 152–156, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kuma, M. Hatano, M. Matsui et al., “The role of autophagy during the early neonatal starvation period,” Nature, vol. 432, no. 7020, pp. 1032–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Battaglia, A. Bertoluzza, F. Calbucci et al., “High-performance liquid chromatographic analysis of physiological amino acids in human brain tumors by pre-column derivatization with phenylisothiocyanate,” Journal of Chromatography B, vol. 730, no. 1, pp. 81–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Charalambous, F. M. Smith, W. R. Bennett, T. E. Crew, F. Mackenzie, and A. Ward, “Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8292–8297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. W. L. Stanford, T. Epp, T. Reid, and J. Rossant, “Gene trapping in embryonic stem cells,” Methods in Enzymology, vol. 420, pp. 136–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Bonhaus, H. Pasantes-Morales, and R. J. Huxtable, “Actions of guanidinoethane sulfonate on taurine concentration, retinal morphology and seizure threshold in the neonatal rat,” Neurochemistry International, vol. 7, no. 2, pp. 263–270, 1985. View at Publisher · View at Google Scholar · View at Scopus
  30. J. De La Rosa and M. H. Stipanuk, “Effect of guanidinoethanesulfonate administration on taurine levels in rat dams and their pups,” Nutrition Reports International, vol. 30, no. 5, pp. 1121–1125, 1984. View at Google Scholar · View at Scopus
  31. B. Heller-Stilb, C. van Roeyen, K. Rascher et al., “Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice,” The FASEB Journal, vol. 16, no. 2, pp. 231–233, 2002. View at Google Scholar · View at Scopus
  32. U. Warskulat, B. Heller-Stilb, E. Oermann et al., “Phenotype of the taurine transporter knockout mouse,” Methods in Enzymology, vol. 428, pp. 439–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ito, Y. Kimura, Y. Uozumi et al., “Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 5, pp. 927–937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Ueki, H. B. Roman, A. Valli et al., “Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide,” American Journal of Physiology, vol. 301, no. 4, pp. E668–E684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Ueki, H. B. Roman, L. L. Hirschberger, C. Junior, and M. H. Stipanuk, “Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase,” American Journal of Physiology, vol. 302, pp. E1292–E1299, 2012. View at Google Scholar
  36. H. B. Roman, L. L. Hirschberger, J. Krijt, A. Valli, V. Kozich, and M. H. Stipanuk, “The cysteine dioxygenase knockout mouse: altered cyteine metabolism in nonhepatic tissues leads to excess H2S/HS- production and evidence of pancreatic and lung toxicity,” Antioxidants and Redox Signaling, vol. 19, no. 12, pp. 1321–1336, 2013. View at Publisher · View at Google Scholar
  37. J. A. Sturman and J. M. Messing, “Dietary taurine content and feline reproduction and outcome,” Journal of Nutrition, vol. 121, no. 8, pp. 1195–1203, 1991. View at Google Scholar · View at Scopus
  38. J. A. Sturman and J. M. Messing, “High dietary taurine effects on feline tissue taurine concentrations and reproductive performance,” Journal of Nutrition, vol. 122, no. 1, pp. 82–88, 1992. View at Google Scholar · View at Scopus
  39. M. Trujillo, G. Ferrer-Sueta, L. Thomson, L. Flohé, and R. Radi, “Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite,” Sub-Cellular Biochemistry, vol. 44, pp. 83–113, 2007. View at Google Scholar · View at Scopus
  40. R. A. Poynton and M. B. Hampton, “Peroxiredoxins as biomarkers of oxidative stress,” Biochimica et Biophysica Acta, vol. 1840, no. 2, pp. 906–912, 2013. View at Publisher · View at Google Scholar
  41. S. W. Schaffer, J. Azuma, and M. Mozaffari, “Role of antioxidant activity of taurine in diabetes,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 2, pp. 91–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Brigelius-Flohe and M. Maiorino, “Glutathione peroxidases,” Biochimica et Biophysica Acta, vol. 1830, no. 5, pp. 3289–3303, 2013. View at Google Scholar
  43. D. Autheman, R. A. Sheldon, N. Chaudhuri et al., “Glutathione peroxidase overexpression causes aberrant ERK activation in neonatal mouse cortex after hypoxic preconditioning,” Pediatric Research, vol. 72, no. 6, pp. 568–575, 2012. View at Google Scholar
  44. E. Lubos, J. Loscalzo, and D. E. Handy, “Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 15, no. 7, pp. 1957–1997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Legrand, “Lactoferrin, a key molecule in immune and inflammatory processes,” Biochemistry and Cell Biology, vol. 90, no. 3, pp. 252–268, 2012. View at Google Scholar
  46. D. Legrand and J. Mazurier, “A critical review of the roles of host lactoferrin in immunity,” BioMetals, vol. 23, no. 3, pp. 365–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. P. P. Ward and O. M. Conneely, “Lactoferrin: role in iron homeostasis and host defense against microbial infection,” BioMetals, vol. 17, no. 3, pp. 203–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. L. Brooks, “Molecular mechanisms of prolactin and its receptor,” Endocrine Reviews, vol. 33, no. 4, pp. 1–22, 2012. View at Google Scholar
  49. N. Binart, A. Bachelot, and J. Bouilly, “Impact of prolactin receptor isoforms on reproduction,” Trends in Endocrinology and Metabolism, vol. 21, no. 6, pp. 362–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, and P. A. Kelly, “Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice,” Endocrine Reviews, vol. 19, no. 3, pp. 225–268, 1998. View at Google Scholar · View at Scopus
  51. T. P. Roosild, S. Castronovo, A. Villoso, A. Ziemba, and G. Pizzorno, “A novel structural mechanism for redox regulation of uridine phosphorylase 2 activity,” Journal of Structural Biology, vol. 176, no. 2, pp. 229–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Wan, D. Cao, J. Zeng, A. Ziemba, and G. Pizzorno, “Activation of STAT1, IRF-1, and NF-κB is required for the induction of uridine phosphorylase by tumor necrosis factor-α and interferon-γ,” Nucleosides, Nucleotides and Nucleic Acids, vol. 29, no. 4–6, pp. 488–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Johansson, “Identification of a novel human uridine phosphorylase,” Biochemical and Biophysical Research Communications, vol. 307, no. 1, pp. 41–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Masuda, H. Ogawa, T. Matsushima et al., “Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 8, pp. 1234–1247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Imai, R. Kanamoto, I. Yagi, M. Kotaru, T. Saeki, and K. Iwami, “Response of the induction of rat liver serine dehydratase to changes in the dietary protein requirement,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 2, pp. 383–387, 2003. View at Google Scholar · View at Scopus
  56. I. López-Flores, J. Peragón, R. Valderrama et al., “Downregulation in the expression of the serine dehydratase in the rat liver during chronic metabolic acidosis,” American Journal of Physiology, vol. 291, no. 5, pp. R1295–R1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Ishikawa, T. Ninagawa, and M. Suda, “Hormonal and dietary control of serine dehydratase in rat liver,” Journal of Biochemistry, vol. 57, no. 4, pp. 506–513, 1965. View at Google Scholar · View at Scopus